Multiple Choices

  1. What is the simplest definition of recursion?

    • A method is recursive if it does not take arguments.
    • A property is recursive if it has a backing field.
    • A method is recursive if it calls itself.
    • A method is recursive if it calls a constructor.
    • A class is recursive if it inherits from another class.
  2. Consider the following code:

    void Test(int n)
        {
        if (n != 0){
            Console.Write($"{n} ");
            Test(n - 1);
            }
        }
    Test(3);

    What will it display?

    • Nothing
    • n
    • 3 2 1
    • 3 2 1 0
    • 3 2 1 0 -1 -2 -3 -4 -5 … until the program crashes.
    • 2 1 0 -1 -2 -3 -4 -5 … until the program crashes.
    • 1 2 3
    • 0 1 2 3
  3. Consider the following code:

    void Test(int n)
        {
            Console.Write($"{n} ");
            Test(n - 1);
        }
    Test(3);

    What will it display?

    • Nothing
    • n
    • 3 2 1
    • 3 2 1 0
    • 3 2 1 0 -1 -2 -3 -4 -5 … until the program crashes.
    • 2 1 0 -1 -2 -3 -4 -5 … until the program crashes.
    • 1 2 3
    • 0 1 2 3
  4. Consider the following code:

    void Test(int n)
        {
            Test(n - 1);
            Console.Write($"{n} ");
        }
    Test(3);

    What will it display?

    • Nothing
    • n
    • 3 2 1
    • 3 2 1 0
    • 3 2 1 0 -1 -2 -3 -4 -5 … until the program crashes.
    • 2 1 0 -1 -2 -3 -4 -5 … until the program crashes.
    • 1 2 3
    • 0 1 2 3

Exercises

  1. What would the following code display?

    int Myst1(int n)
    {
        if (n != 0)
        {
            return n + Myst1(n - 1);
        }
        else
        {
            return n;
        }
    }
     
    Console.WriteLine(Myst1(4));

    Solution

    10

  2. What would the following code display?

    void Myst2(int n)
    {
        if (n == 0) { Console.WriteLine("Done"); }
        else if (n < 0)
        {
            Console.Write($"{n} ");
            Myst2(-n);
        }
        else
        {
            Console.Write($"{n} ");
            Myst2(-(n - 1));
        }
    }
    Myst2(3);

    Solution

    3 -2 2 -1 1 Done

  3. What would the following code display?

    void Myst3(int len)
    {
        MystH(0, 1, 1, len);
    }
    void MystH(int axP, int bxP, int counter, int len)
    {
        if (counter <= len)
        {
            Console.Write($"{axP} ");
            MystH(bxP, axP + bxP, counter + 1, len);
        }
    }
    Myst3(6);

    Solution

    0 1 1 2 3 5

    Those are the first 6 digits of the Fibonacci sequence.

  4. Rewrite the following while loop as a recursive method.

        int i = 10;
        while (i > 0)
        {
          Console.Write($"{i} ");
          i--;
        }

    (Download this code){.download-button}

    Solution

        void CountDown(int iP)
        {
          if (iP > 0)
          {
            Console.Write($"{iP} ");
            CountDown(iP - 1);
          }
        }
        CountDown(10);

    (Download this code){.download-button}

  5. Rewrite the following do…while loop as a recursive method.

        int n = 10;
        int sum = 0;
        do
        {
          sum += n;
          n--;
        } while (n > 0);
        Console.WriteLine($"Sum: {sum}");

    (Download this code){.download-button}

    Solution

        int Sum(int nP)
        {
          if (nP > 0)
          {
            return nP + Sum(nP - 1);
          }
          else
          {
            return 0;
          }
        }
        Console.WriteLine($"Sum: {Sum(10)}");

    (Download this code){.download-button}

  6. Rewrite the following for loop as a recursive method.

        int[] test = { 1, 5, 2, 10, 11, -12, -11 };
        for (int l = 0; l < test.Length; l++)
        {
          if (test[l] % 2 != 0)
          {
            Console.Write($"{test[l]} ");
          }
        }
     
        // Display odd values using recursion
        void OddInArray(int[] arP, int cIndex)
        {
          if (cIndex < arP.Length)
          {
            if (arP[cIndex] % 2 != 0)
            {
              Console.Write($"{arP[cIndex]} ");
            }
            OddInArray(arP, cIndex + 1);
          }
        }
        OddInArray(test, 0);

    (Download this code){.download-button}

    Solution

        void OddInArray(int[] arP, int cIndex)
        {
          if (cIndex < arP.Length)
          {
            if (arP[cIndex] % 2 != 0)
            {
              Console.Write($"{arP[cIndex]} ");
            }
            OddInArray(arP, cIndex + 1);
          }
        }

    (Download this code){.download-button}

  7. Write a recursive method that takes an int as argument, generates a random int between 0 and this argument, displays it and calls itself with that number. The method should stop when the int generated is 0.

    Solution

     void RandomTo0(int n)
     {
         Random seed = new Random();
         int randomNumber = seed.Next(0, n);
         if (randomNumber == 0) { Console.WriteLine("Done"); }
         else
         {
             Console.WriteLine($"Number: {randomNumber}");
             RandomTo0(randomNumber);
         }
     }
  8. Write a recursive method that takes a string as argument and returns true if it is a palindrome. Your method should return true on input "civic", "noon", "radar" and "" (empty string), and false on input "test" and "not a palindrome".

    Hint

    Use Length - 1 to access the last index of the string, and the Substring method to create a string without the first and last characters.

    Solution

     bool Palindrome(string s)
     {
         if (s.Length <= 1) return true;
         else
         {
             if (s[0] == s[s.Length - 1]) return Palindrome(s.Substring(1, s.Length - 2));
             else return false;
         }
     }
     
     List<string> palindrome_test = new List<string> { "radar", "civic", "noon", "", "test", "not a palindrome"};
     foreach (string test in palindrome_test)
     {
         Console.WriteLine(test + " is a palindrome: " + Palindrome(test));
     }
  9. Write a recursive method that takes an int as argument and returns the number of even digits in it. For example, on input 631, the method should return 1 since only 6 is even.

    Hint

    The % 10 operation gives the last digit of a number (631 % 10 gives 1), and the / 10 operation (on integers) removes the last digit from an int (631 / 10 gives 63).

    Solution

     int CountEven(int n)
     {
         if (n == 0) { return 0; }
         else if (n % 10 % 2 == 0) { return 1 + CountEven(n / 10); }
         else { return CountEven(n / 10); }
     }