A “custom” implementation of list can be found in this project.
using System; // This is required for the exception.
public class CList<T>
{
// A CList is … a Cell.
private Cell first;
// By default, a CList contains only an empty cell.
public CList()
{
first = null;
}
// A Cell is itself two things:
// - An element of data (of type T),
// - Another cell, containing the next element of data.
// We implement this using automatic properties:
private class Cell
{
public T Data { get; set; }
public Cell Next { get; set; }
public Cell(T dataP, Cell nextP)
{
Data = dataP;
Next = nextP;
}
}
// A method to add a cell at the beginning
// of the CList (to the left).
// We call it AddF for "Add First".
public void AddF(T dataP)
{
first = new Cell(dataP, first);
}
// A method to add a cell at the end
// of the CList (to the right).
// We call it AddL for "Add Last".
public void AddL(T dataP)
{
if (first == null)
AddF(dataP);
else
{
Cell cCell = first;
while (cCell.Next != null)
// As long as the cCell Cell has a neighbour…
{
cCell = cCell.Next;
// We move the cCell cell to this neighbour.
}
// When we are done, we can insert the cell.
cCell.Next = new Cell(dataP, null);
}
}
// We will actually frequently test if
// a CList is empty, so we might
// as well introduce a method for that:
public bool IsEmpty()
{
return (first == null);
}
// Accessor for the size of the CList.
public int Size
{
get
{
int size;
if (IsEmpty())
{
size = 0;
}
else
{
size = 1;
Cell cCell = first;
while (cCell.Next != null)
// As long as the cCell Cell has a neighbour…
{
cCell = cCell.Next;
// We move the cCell cell to this neighbour.
size++;
}
}
return size;
}
}
// We can implement a ToString method
// "the usual way", using a loop
// similar to the one in AddL:
// (But we make it very fancy, as
// if we were drawing an array).
public override string ToString()
{
string returned = "";
for (int i = 0; i < Size; i++)
{
returned += "————";
}
returned += "\n| ";
Cell cCell = first;
while (cCell != null)
{
returned += $"{cCell.Data} | ";
cCell = cCell.Next;
}
returned += "\n";
for (int i = 0; i < Size; i++)
{
returned += "————";
}
return returned;
}
// Method to obtain the nth element if it exists.
public T Access(int index)
{
if (index >= Size)
{
throw new IndexOutOfRangeException();
}
else // Some IDE will flag this "else" as redundant.
{
int counter = 0;
Cell cCell = first;
while (counter < index)
{
cCell = cCell.Next;
counter++;
}
return cCell.Data;
}
}
/*
* We can write four methods to
* remove elements from a CList.
* - One that clears it entirely,
* - One that removes the first cell,
* - One that removes the last cell,
* - One that removes the nth cell, if it exists,
*/
public void Clear()
{
first = null;
}
public void RemoveF()
{
if (!IsEmpty())
first = first.Next;
}
public void RemoveL()
{
if (!IsEmpty())
{
if (first.Next == null)
{
RemoveF();
}
else
{
Cell cCell = first;
while (
cCell.Next != null && cCell.Next.Next != null
)
{
cCell = cCell.Next;
}
cCell.Next = null;
}
}
}
// Method to remove the nth element if it exists.
public void RemoveI(int index)
{
if (index > Size)
{
throw new IndexOutOfRangeException();
}
else // Some IDE will flag this "else" as redundant.
{
int counter = 0;
Cell cCell = first;
while (counter < index - 1)
{
cCell = cCell.Next;
counter++;
}
cCell.Next = cCell.Next.Next;
}
}
// Method to obtain the largest
// number of consecutive values
// dataP.
public int CountSuccessive(T dataP)
{
int cCount = 0;
int mCount = 0;
Cell cCell = first;
while (cCell != null)
{
if (cCell.Data.Equals(dataP))
{
cCount++;
}
else
{
if (cCount > mCount)
{
mCount = cCount;
}
cCount = 0;
}
cCell = cCell.Next;
}
if (cCount > mCount)
{
mCount = cCount;
}
return mCount;
}
// Method to remove at a particular index
// Very similar to RemoveI, simply
// implemented with a different philosophy.
public void RemoveAt(int index)
{
if (index >= 0 && index < Size)
{
if (index == 0)
RemoveF();
else if (index == (Size - 1))
RemoveL();
else
{
Cell cCell = first;
for (int i = 0; i < index - 1; i++)
{
cCell = cCell.Next;
}
cCell.Next = cCell.Next.Next;
}
}
else
throw new ArgumentOutOfRangeException();
}
// Method to reverse a list
public void Reverse()
{
Cell cCell = first;
Cell previous = null;
Cell next;
while (cCell != null)
{
next = cCell.Next;
cCell.Next = previous;
previous = cCell;
cCell = next;
}
first = previous;
}
// Method to look for a specific value (recursively)
public bool Find(T dataP)
{
return Find(first, dataP);
}
private bool Find(Cell cCell, T dataP)
{
if (cCell == null)
return false;
else if (cCell.Data.Equals(dataP))
return true;
else
return Find(cCell.Next, dataP);
}
// Method to obtain the last index
// of dataP.
public int LastIndexOf(T dataP)
{
int index = 0,
lastIndex = -1;
Cell cCell = first;
while (cCell != null)
{
if (cCell.Data.Equals(dataP))
{
lastIndex = index;
}
index++;
cCell = cCell.Next;
}
return lastIndex;
}
// Recursive method to obtain the
// frequency of dataP
public double Frequency(T dataP)
{
if (Size == 0)
throw new ArgumentNullException("The list is empty.");
else
return Count(dataP, first) / (double)Size;
}
private int Count(T dataP, Cell pTmp)
{
if (pTmp == null)
return 0;
else if (pTmp.Data.Equals(dataP))
return 1 + Count(dataP, pTmp.Next);
else
return 0 + Count(dataP, pTmp.Next);
}
}