
Contents

Objects and References (Solutions) 1
Questions . 1
Warm-up Exercises . 1
Problems . 2

Objects and References (Solutions)

Questions
1. What is the difference between ref and out?

□ ref variables are “read-only”, their value cannot change inside a
method.

□ ref is a keyword, out is not.
□ There isn’t any: they are both used to pass a reference to amethod.
⊠ out variables may not be initialized going into the method, but

have to receive a value inside the method.
□ There isn’t any: they are both used to pass a value to a method.

Warm-up Exercises
1. Consider the following code:

using System;

class Program
{

static void Main()
{
int x = 1;
int y = 2;
int z;
char c = Foo(x, ref y, out z);
char d = Foo(x, ref y, out z, '%');

}

static char Foo(
int x,
ref int y,
out int z,
char symb = '*'

)
{

1

x++;
y--;
z = x + y;
return symb;

}
}

(a) What are the values of x, y and z

i. Before the Foomethod is called?
ii. Inside the Foomethod?
iii. After the Foomethod executed?

(b) What is the value of c?

(c) What is the value of d?

Solution

Before the Foomethod is executed: 1, 2, and z is not set.

Inside the Foomethod: 2, 1 and 3.

After the Foomethod: 1, 0, and 2

c holds '*', d holds %.

Problems
1. Write the AddRev method (header included) such that the follow-

ing:

int x0 = 4,
y0 = 3;

AddRev(ref x0, ref y0);
Console.WriteLine($"x0 is {x0}, y0 is {y0}.");

would display

x0 is 7, y0 is 1.

Solution

void AddRev(ref int xP0, ref int yP0)
{
int temp = xP0;
xP0 = xP0 + yP0;
yP0 = temp - yP0;

}

2. Write the AddLog method (header included) such that the follow-
ing:

2

string log;
int x1 = 4,
y1 = 3;

int result = AddLog(x1, y1, out log);
Console.WriteLine(log + "\n" + result);

would display

4 + 3 = 7.
7

Solution

int AddLog(int xP1, int yP1, out string logP)
{
logP = xP1 + " + " + yP1 + " = " + (xP1 + yP1) +

".";↪
return xP1 + yP1;

}

3. Write the AddResetmethod (header included) such that the follow-
ing:

int x2 = 2,
y2 = 3,
z2;

AddReset(ref x2, ref y2, out z2);
Console.WriteLine($"x2 = {x2}, y2 = {y2}, z2 =
{z2}.");↪

would display

x2 = 0, y2 = 0, z2 = 5.

Solution

void AddReset(ref int xP2, ref int yP2, out int
zP2)↪

{
zP2 = xP2 + yP2;
xP2 = 0;
yP2 = 0;

}

4. Consider the “regular” implementation of the Rectangle class:

using System;
class Rectangle
{

private int length;
public int Length
{

3

get { return length; }
set { if (value < 0) { throw new

ArgumentNullException(); } else length =
value; }

↪
↪

}

private int width;
public int Width
{

get { return width; }
set { if (value < 0) { throw new

ArgumentNullException(); } else width =
value; }

↪
↪

}

public Rectangle(int wP, int lP)
{

Width = wP;
Length = lP;

}

public override string ToString()
{

return $"Width: {Width}\nLength: {Length}";
}

}

And try to answer the following questions.

Solution

A possible solution to those questions is available1.

(a) Write a Drawmethod that takes one optional char parameter
and draw a rectangle of the calling object’s width and length
using that character if provided, * otherwise. If your method is
correctly implemented, then

Rectangle r0 = new Rectangle(3, 2);

r0.Draw();
r0.Draw('-');

should display

1https:/princomp.github.io/code/projects/RectangleReferences.zip

4

https:/princomp.github.io/code/projects/RectangleReferences.zip

Solution

Apossible solution is: public void Draw(char symb = '*') { string drawing = ""; for (int i = 0; i < Length; i++) { for (int j = 0; j < Width; j++) { drawing += symb; } drawing += "\n"; } Console.WriteLine(drawing); }

(b) Write a Copy method that does not take arguments, and re-
turn a copy of the calling object. If your method is correctly
implemented, then

Rectangle original = new Rectangle(5, 10);
Rectangle copy = original.Copy();
Console.WriteLine("Original:\n" + original +

"\nCopy:\n"+ copy + "\n");↪
copy.Length = 12;
Console.WriteLine("\nOriginal:\n" + original +

"\nCopy:\n" + copy + "\n");↪

should display

Original:
Width: 5
Length: 10
Copy:
Width: 5
Length: 10

Original:
Width: 5
Length: 10
Copy:
Width: 5
Length: 12

If the length of the original object changedafter copy.Length = 12;
was executed, then your method makes a shallow copy in-
stead of a “deep” copy.

Solution

Apossible solution is: public Rectangle Copy() { return new Rectangle(Width, Length); }

(c) Write an Equals method that return true if the calling object
and the argument are both non-null rectangles with the same
length and width, false otherwise. If your method is correctly
implemented, then

5

Rectangle r1 = new Rectangle(5, 10);
Rectangle r2 = new Rectangle(5, 10);
Rectangle r3 = null;
Rectangle r4 = r1;
Rectangle r5 = new Rectangle(10, 5);

Console.WriteLine(
"r1 and r2 identical: " + r1?.Equals(r2)
+ "\nr1 and r3 identical: " + r1?.Equals(r3)
+ "\nr3 and r1 identical: " + r3?.Equals(r1)
+ "\nr3 and r3 identical: " + r3?.Equals(r3)
+ "\nr1 and r4 identical: " + r1?.Equals(r4)
+ "\nr1 and r5 identical: " + r1?.Equals(r5)
);

should display

r1 and r2 identical: True
r1 and r3 identical: False
r3 and r1 identical:
r3 and r3 identical:
r1 and r4 identical: True
r1 and r5 identical: False

Solution

Apossible solution is: public bool Equals(Rectangle rP) { if (rP == null) return false; return rP.Length == Length && rP.Width == Width; }

6

	Objects and References (Solutions)
	Questions
	Warm-up Exercises
	Problems

