Contents

Objects and References (Solutions) 1
Questions e 1
Warm-up Exerciseso o 1
Problems 2

Objects and References (Solutions)

Questions

1. What is the difference between ref and out?

O ref variables are “read-only”, their value cannot change inside a
method.

O ref is a keyword, out is not,

O There isn't any: they are both used to pass a reference to a method.

X out variables may not be initialized going into the method, but
have to receive a value inside the method.

O There isn't any: they are both used to pass a value to a method.

Warm-up Exercises

1. Consider the following code:

using System;

class Program

{
static void Main()
{
int x = 1;
int y = 2;
int z;
char ¢ = Foo(x, ref y, out z);
char d = Foo(x, ref y, out z, '%');
}
static char Foo(
int x,
ref int vy,
out int z,
char symb = '*'

~

X++3

y-=3
Z =X +Y;
return symb;
}
}

() What are the values of x, y and z

i. Before the Foo method is called?
ii. Inside the Foo method?
ii. Affer the Foo method executed?

(b) What is the value of ¢?
(c) What is the value of d?
Solution
Before the Foo method is executed: 1, 2, and z is not set.
Inside the Foo method: 2, 1 and 3.
After the Foo method: 1,0, and 2
c holds '*', d holds %

Problems
1. Write the AddRev method (header included) such that the follow-
ing:
int x0 = 4,

yo = 33
AddRev(ref x0, ref y0);
Console.WriteLine($"x0 is {x0}, y0 is {y0}.");

would display
x0 is 7, y0O is 1.
Solution
void AddRev(ref int xP0, ref int yPO)
{
int temp = xPO;
xP0® = xP0O + yPO;
yPO = temp - yPO;
}
2. Write the AddLog method (header included) such that the follow-

ing:

string log;
int x1 = 4,
yl = 3;
int result = AddLog(x1l, y1, out log);
Console.WriteLine(log + "\n" + result);

would display

4 +3=7.
7

Solution

int AddLog(int xP1, int yP1, out string logP)
{
logP = xP1 + " + " + yP1 + " =" + (xP1 + yP1) +

non,
o

¢ J
return xP1 + yP1;
}

. Write the AddReset method (header included) such that the follow-
ing:
int x2 =
y2 = 3,
z2;
AddReset(ref x2, ref y2, out z2);
Console.WriteLine($"x2 = {x2}, y2 = {y2}, z2 =
< {22 } U) s

would display

x2 =0, y2 =0, z2 = 5.

Solution
void AddReset(ref int xP2, ref int yP2, out int
~ zP2)

{
zP2
xP2
yP2
¥

. Consider the “regular” implementation of the Rectangle class:

2,

xP2 + yP2;
0;
0;

using System;

class Rectangle

{
private int length;
public int Length
{

get { return length; }

set { if (value < 0) { throw new

< ArgumentNullException(); } else length =
< value; }

}

private int width;
public int Width

{
get { return width; }
set { if (value < 0) { throw new
< ArgumentNullException(); } else width =
< value; }
I
public Rectangle(int wP, int 1P)
{
Width = wP;
Length = 1P;
I
public override string ToString()
{
return $"Width: {Width}\nLength: {Length}";
}

}

And fry to answer the following questions.
Solution
A possible solution to those questions is available'.

(a) Write a Draw method that takes one optional char parameter
and draw a rectangle of the calling object’s width and length
using that character if provided, * otherwise. If your method is
correctly implemented, then

Rectangle r® = new Rectangle(3, 2);

r@.Draw();

ro@.Draw('-"');
should display

* k%
* k%

! https:/princomp.github.io/code/projects/RectangleReferences.zip

https:/princomp.github.io/code/projects/RectangleReferences.zip

Solution
A possible solutionis: public void Draw(char symb = '*') { string drawin

(b) Write a Copy method that does not take arguments, and re-
turn a copy of the calling object. If your method is correctly
implemented, then

Rectangle original = new Rectangle(5, 10);

Rectangle copy = original.Copy();

Console.WriteLine("Original:\n" + original +

o "\nCopy:\n"+ copy + "\n");

copy.Length = 12;

Console.WriteLine("\nOriginal:\n" + original +
“\nCopy:\n" + copy + "\n");

should display

Original:
Width: 5
Length: 10
Copy:
Width: 5
Length: 10

Original:

wWidth: 5

Length: 10

Copy:

Width: 5

Length: 12

If the length of the original object changed after copy .Length = 12;

was executed, then your method makes a shallow copy in-
stead of a “deep” copy.

Solution
A possible solutionis: public Rectangle Copy() A return new Rectangle(Wi

(c) Write an Equals method that return true if the calling object
and the argument are both non-null rectangles with the same
length and width, false otherwise. If your method is correctly
implemented, then

new Rectangle(5, 10);
new Rectangle(5, 10);
null;

ri;

new Rectangle(10, 5);

Rectangle r1
Rectangle r2
Rectangle r3
Rectangle r4
Rectangle r5

Console.WritelLine(

"r1 and r2 identical: " + rl17.Equals(r2)
+ "\nrl and r3 identical: " + r1?.Equals(r3)
+ "\nr3 and rl1 identical: " + r37.Equals(rl)
+ "\nr3 and r3 identical: " + r3?.Equals(r3)
+ "\nrl and r4 identical: " + ril1?.Equals(r4)
+ "\nrl and r5 identical: " + ri1?.Equals(r5)
)5

should display

rl and r2 identical: True

rl and r3 identical: False

r3 and rl1 identical:

r3 and r3 identical:

rl and r4 identical: True

rl and r5 identical: False

Solution

A possible solutionis: public bool Equals(Rectangle rP) A if (rP == null

	Objects and References (Solutions)
	Questions
	Warm-up Exercises
	Problems

