
Contents

Properties (Solutions) 1
Questions . 1

Circle Example . 2
Plant Example . 3

Problems . 4

Properties (Solutions)

Questions
1. What is the right syntax for an automatic property? Select all that

apply.

⊠ public int Width { get; set; }
⊠ public int Width { set; get; }
□ public int Width { Set; Get; }
□ public int Width { Get; Set; }
□ public int Width { set(); get();}
□ public int Width { get(); set();}

2. Which of the following statements is false?

□ Properties can be static.
⊠ get and set accessors must always have bodies.
□ Properties have headers.
□ get and set accessors correspond to “getter” and “setter”

methods for attributes.

3. Consider the following implementation of a class called Pet:

class Pet{
private string name;
public string Name{

get;
set { name = value; }

}
}

This code will give a compilation error. Why?

⊠ The set accessor has a body, but the get accessor does not.
□ The instance variable for name is declared, but no value is as-

signed.
□ value is not a keyword and hasn’t been declared, so it is mean-

ingless here.

1

□ The access modifier for name is private, but it should be
public.

Circle Example

For the following questions, imagine you’ve implemented a Circle
class, with the attribute private decimal diameter; and a “getter”
and “setter” method for that attribute. You’ve created an object in this
Circle class called myCircle. If you were to implement the class with
properties instead:

1. What would calling the get accessor do?

⊠ Return the value of diameter
□ Assign a value to diameter

2. What would calling the set accessor do?

□ Return the value of diameter
⊠ Assign a value to diameter

3. The statement myCircle.GetDiameter(); would have to be
rewritten. How would you rewrite it?

⊠ myCircle.Diameter;
□ myCircle.diameter;
□ Diameter.myCircle;
□ myCircle = Diameter;

4. The statement myCircle.SetDiameter(5.0m); would also need
to be rewritten. How would you rewrite it?

□ myCircle.diameter = 5.0m;
□ Diameter.myCircle(5.0m);
⊠ myCircle.Diameter = 5.0m;
□ myCircle.diameter(5.0m);

You would now like to add a Color property of type string to your
Circle class.

1. How would you declare the instance variable?

□ public color string;
□ public string Color;
□ private string Color;
⊠ private string color;

2. How would you format the property header?

□ public string color;
⊠ public string Color;
□ private Color string;

2

□ private string color;

3. What would the get accessor’s body look like, in its most basic pos-
sible form?

□ color;
□ color = value;
⊠ return color;
□ string color;

4. What would the set accessor’s body look like, in its most basic pos-
sible form?

□ color;
⊠ color = value;
□ return color;
□ string color;

5. In the Main method, you would like to assign the value "yellow"
to color. Which statement would do that?

□ yellow.myCircle;
⊠ myCircle.Color = "yellow";
□ myCircle.yellow = Color;
□ myCircle = "yellow";

Plant Example

For the next questions, consider the following implementation of a class
called Plant:

class Plant{
private string species;
public string Species

{get;} = "Helianthus annus";
private static bool hasChloroplasts;
public static bool HasChloroplasts

{get;} = true;
}

1. Will this code compile? Why or why not?

□ No, because there are no set accessors, and properties must
have one.

□ No, because a property cannot be assigned a default value.
□ No, because a get accessor must always have a body.
⊠ Yes, because properties are not required to have set acces-

sors.
□ Yes, because a default value must be assigned for each prop-

erty.

3

Suppose you’ve created an object in the Plant class called myPlant.

1. In the Main method, what would the statement

Console.Write(myPlant.Species);

do?

⊠ Display the current value of species, "Helianthus annus".
□ Rename the myPlant object to Species.
□ It won’t do anything–the code for the class doesn’t compile.
□ It won’t do anything–the property is write-only.

2. The HasChloroplasts property is static. What does this mean?
Select all that apply.

□ Every object in the Plant class has its own HasChloroplasts
property.

⊠ The property is shared across the class and all of its instances.
⊠ The property can be accessed without creating a Plant ob-

ject.
□ The property’s value cannot be changed from the default.

3. The statement myPlant.Species = "Coffea arabica"; would
not compile. Why not?

□ The syntax is wrong.
□ Only a static property’s default value can be changed.
□ The code for the class doesn’t compile.
⊠ The property only has a get accessor, so it is read-only.

4. What modification to the Plant class would allow the statement
myPlant.Species = "Coffea arabica"; to compile?

□ Remove the default value, "Helianthus annus".
⊠ Add set; to the Species property.
□ Add set; to the HasChloroplasts property.
□ Make the entire class static.
□ Change the access modifier for species from private to

public

Problems
1. Consider the following implementation of a Rectangle class:

class Rectangle
{

private int length;
private int width;

public void SetLength(int lengthParameter)

4

{
length = lengthParameter;

}

public int GetLength()
{
return length;

}

public void SetWidth(int widthParameter)
{

width = widthParameter;
}

public int GetWidth()
{
return width;

}

public int ComputeArea()
{
return length * width;

}
}

(a) Write a Mainmethod that

i. Creates a Rectangle object,
ii. Sets its width to 5,
iii. Sets its length to 10,
iv. Displays its area.

Solution
using System;
class Program
{
public static void Main()
{

Rectangle test = new Rectangle(); // 1
test.SetWidth(5); // 2
test.SetLength(10); // 3
Console.WriteLine(test.ComputeArea()); //

4↪
}
}

(b) Write an implementation of the Rectangle class using only
properties (included for the ComputeArea()).

5

Solution

class Rectangle{
public int Length{get; set;}
public int Width{get; set;}
public int Area{get{return Length * Width;}}

}

(c) Write a Main method that performs the same tasks as above,
but using the properties you just defined.

Solution

using System;
class Program
{

public static void Main()
{

Rectangle test = new Rectangle(); // 1
test.Width = 5; // 2
test.Length = 10; // 3
Console.WriteLine(test.Area); // 4

}
}

2. Implement a SDCard class to represent SD cards. Add attributes to
your answer if needed.

(a) Implement a Nickname string property using automatic
properties.
Solution
public string Nickname {get; set;}

(b) Implement a Capacity int property whose setter raises an
ArgumentException exception if the value passed as argu-
ment is not 8, 16, 32, 64 or 128. The getter should simply return
the value stored.
Solution
private int capacity;
public int Capacity {

set {
if (value == 8 || value == 16 || value ==

32 || value == 64 || value == 128)↪
capacity = value;

else
throw new ArgumentException();

}
get { return capacity; }

}

6

(c) Implement a CapacityInGb int property with only a getter,
that returns the Capacity times 8.
Solution
public int CapacityInGb {

get {return capacity * 8;}
}

(d) Implement a ToString method that returns a string con-
taining the nickname of the SD card, its capacity in gigabytes
(GB, from question 2.), and its capacity in gigabits (Gb, from
question 3.).

Solution
public override string ToString(){

return "Name: " + Nickname + "\nCapacity: " +
Capacity + "GB" + "\nCapacity in Gb: " +
CapacityInGb + "Gb";

↪
↪

}

Solution

A complete solution gives:

using System;

class SDCard
{

public string Nickname { get; set; }
private int capacity;
public int Capacity
{

set
{
if (

value == 8
|| value == 16
|| value == 32
|| value == 64
|| value == 128

)
capacity = value;

else
throw new ArgumentException();

}
get { return capacity; }

}
public int CapacityInGb
{

7

get { return capacity * 8; }
}

public override string ToString()
{
return "Name: "
+ Nickname
+ "\nCapacity: "
+ Capacity
+ "GB"
+ "\nCapacity in Gb: "
+ CapacityInGb
+ "Gb";

}
}

(Download this code)1

And a possible test program is:

 using System;

class Program
{

static void Main()
{

SDCard test = new SDCard();
test.Nickname = "Blue";
test.Capacity = 8;
Console.WriteLine(test);
try
{
test.Capacity = 7;

}
catch (Exception e)
{
Console.WriteLine(e.Message);

}
}

}

(Download this code)2

1code/projects/SDCard.zip
2code/projects/SDCard.zip

8

code/projects/SDCard.zip
code/projects/SDCard.zip

	Properties (Solutions)
	Questions
	Circle Example
	Plant Example

	Problems

