
Contents

Warm-up Exercises . 1
Questions . 2
Problems . 4

Warm-up Exercises
1. Consider the following partial class definition:

public class Book
{

private string title;
private string author;
private string publisher;
private int copiesSold;

}

1. Write a statement that would create a Book object.
2. Write a “getter” and a “setter” for the title attribute.
3. Write a constructor for the Book class taking at least one argument.

Solution for Part 1

Book myBook = new Book();

Solution for Part 2

public string GetTitle()
{

return title;
}

public void SetTitle(titleP)
{

title = titleP;
}

Solution for Part 3

public Book(string titleP, string authorP)
{

title = titleP;
author = authorP;

}

1

Questions
1. How do you make reference to a public property Name outside of

the class (for instance, in the Mainmethod)?

□ *Name
□ +Name
⊠ .Name
□ None of these

1. In C#, you should think of the class’s properties as the class’s at-
tributes.

⊠ Yes
□ No

1. The property notation allows the client to directly manipulate the
private instance variable.

□ Yes
⊠ No

1. Consider the code:

public void SetName(string tempAccountName)
{
name = tempAccountName; // store the account name
}

Which of the following statements is false? - [] The first line of each
method declaration is the method header. - [] The method’s return type
specifies the type of data themethod returns to its caller after performing
its task. - [] The return type void indicates that when SetName() com-
pletes its task, it does not return any information to its callingmethod. - [x]
All methods require at least one parameter to provide data to perform
tasks.

1. A return type of _____ is specified for a method that does not return
a value.

□ int
□ double
⊠ void
□ None of the above.

1. Methods are called by writing the name of the method followed by
_____ enclosed in parentheses.

□ a condition
⊠ argument(s)
□ a counter
□ None of the above.

2

1. The parameter list in the method header and the arguments in the
method call must agree in:

□ Number
□ Type
□ Order
⊠ All of the above

1. Suppose method1 is declared as

public void method1(int a, float b, string c)

Which of the following methods does not overload method1? - [x]
void method2(int a, float b, char c) - [] int method1(float a, int b, string c)
- [] float method1(int a, float b) - [] string method1(string a, float b, int c)

1. Write a get method for an instance variable named total of type
int.

Solution

public int GetTotal()
{

return total;
}

1. Write a getter for an attribute of type string named myName.

Solution

public string GetMyName()
{

return myName;
}

1. Write a setter for an attribute of type int named myAge.

Solution

public void SetMyAge(int age)
{

myAge = age;
}

1. Assuming name is a string instance variable, there is a problem
with the following setter. What is the problem, and how would one
fix it?

public int SetName1(string var){
name = var;

}

Solution

3

The keyword var is being used as an identifier.

public int SetName1(string nameVar)
{

name = nameVar;
}

1. Is it possible to have more than one constructor defined for a class?
If yes, how can C# know which one is called?

Solution

Yes, C# can identify which constructor is called based on that construc-
tor’s method signature, that is, the combination of parameters associ-
ated with it.

1. What is the name of a constructor method? What is the return type
of a constructor?

Solution

The name of a constructor method is the name of the class that contains
it, and a constructor’s return type is the class that contains it.

1. Write a constructor for a Sodaclass with one stringattribute called
name.

Solution

public Soda(string nameP)
{

name = nameP;
}

1. What is the “default” constructor? Dowealways have the possibility
of using it?

Solution

The default constructor is one without any parameters. The only case in
which it may not be called is if it has not been explicitly defined while
other constructors have been defined.

1. Why would one want to define a constructor for a class?

Solution

By defining a constructor for a class, one can specify which values to
assign to the instance variables upon instantiation.

Problems

4

	Warm-up Exercises
	Questions
	Problems

