2024-11-19
Files (Solutions)
Questions
1. What is the name of the class we use to read from files?
· FileReader
· StreamOpener
· ReadFile
· StreamReader
· FileStream
1. What is of crucial importance?
· Always call the Open method before reading from or writing into a file.
· Always assume the user has C:\ as their main drive.
· Always call the Close method after being done reading from or writing into a file.
· Never read from or write into a file inside a try…catch block.
Problems
1. Write a program that create a text file called HelloWorld.txt in its bin/Debug folder and store “Hello” followed by a name entered by the user in it.
· Solution
· string uName;
 Console.WriteLine("Please, enter your name.");
 uName = Console.ReadLine();

 try
 {
 string filePath = Path.Combine(
 AppDomain.CurrentDomain.BaseDirectory,
 "HelloWorld.txt"
);
 // This string contains the path for the file we create.
 StreamWriter sw = new StreamWriter(filePath);
 // We create the file
 sw.WriteLine("Hello " + uName);
 sw.Close();
 Console.WriteLine("Check out " + filePath + "!");
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
· (Download this code)
1. Write a program that ask the user for a filename, makes sure the filename ends with “.txt” and does not begin with a “.” (otherwise, the file would be hidden on unix systems), does not match a file with the same name in the bin/Debug folder of your program, then create it in the bin/Debug folder of your program and write in it all the number from 1 to 1,000,000 (both included). Out of curiosity, what is the file size?
· Solution
· string fName,
 filePath;
 do
 {
 Console.WriteLine("Enter a file name.");
 fName = Console.ReadLine();
 filePath = Path.Combine(
 AppDomain.CurrentDomain.BaseDirectory,
 fName
);
 } while (
 !fName.EndsWith(".txt")
 || fName.StartsWith(".")
 || File.Exists(filePath)
);
 try
 {
 StreamWriter sw = new StreamWriter(filePath);
 for (int i = 1; i <= 1000000; i++)
 sw.WriteLine(i);
 sw.Close();
 Console.WriteLine("Check out " + filePath + "!");
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
· (Download this code)
· The resulting file is about 6.6 MB on Unix system, 7.52 MB on Windows system.
1. Execute the following program, then write a program that find the greatest number in the RandomNumber.txt file.
· string filePath = Path.Combine(
 AppDomain.CurrentDomain.BaseDirectory,
 "RandomNumbers.txt"
);
 Random gen = new Random();
 try
 {
 StreamWriter sw = new StreamWriter(filePath);
 for (int i = 1; i <= 100; i++)
 sw.WriteLine(gen.Next(1000));
 sw.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
· Solution
· string line;
 int number;
 int maxSoFar;
 try
 {
 StreamReader sr = new StreamReader(filePath);
 line = sr.ReadLine();
 if (int.TryParse(line, out number))
 {
 maxSoFar = number;
 }
 else
 {
 throw new ArgumentException(
 "File contains string that is not a number."
);
 }
 while (line != null)
 {
 if (int.TryParse(line, out number))
 {
 if (maxSoFar < number)
 {
 maxSoFar = number;
 }
 }
 else
 {
 throw new ArgumentException(
 "File contains string that is not a number."
);
 }
 line = sr.ReadLine();
 }
 Console.WriteLine(
 "The maximum number in the file is "
 + maxSoFar
 + "."
);
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
· (Download this code)
1. Suppose that at filePath is located a file where each line is either
· a decimal (e.g., 12.4, -14, 0.34),
· the word “STOP”,
· some other string (“Test”, “The sky is blue”, “Ignore this line”, “My file contains”), that may contain the characters “STOP”.
· Write a program that displays the average of the decimals in the file knowing that
· your program should ignore the values after a line containing “STOP” and only “STOP” if it is present,
· all the other strings should simply be ignored.
· For example, for the following three files, “4.0”, “10.0” and “7.5” should be displayed, as (12.48 - 2.48 + 2) / 3 = 4 (13 been ignored), (15 + 5) / 2 = 10, and (11 + 4) / 2 = 7.5 (12 being ignored).
· ┌────────────────┐
│12.48 │
│This is a test │
│-2.48 │
│2 │
│STOP │
│13 │
└────────────────┘

┌────────────────┐
│My file contains│
│STOP but │
│averages │
│15 │
│ and │
│5 │
└────────────────┘

┌────────────────┐
│This 12 will be │
│ignored │
│but not │
│11 │
│ nor │
│4 │
└────────────────┘
· Solution
· double number;
 double sum = 0;
 int counter = 0;
 double average;
 try
 {
 // Opening file
 StreamReader sr = new StreamReader(filePathP);
 // Reading first line
 string line = sr.ReadLine();

 // Looping through the file until we
 // reach the end, or read the word
 // "STOP" on its own line.
 while (line != null && line != "STOP")
 {
 // We test if the line contains a double.
 if (double.TryParse(line, out number))
 {
 sum += number;
 counter++;
 }
 // We read the next line.
 line = sr.ReadLine();
 }
 sr.Close();
 }
 catch { }
 // if to prevent division by 0.
 if (counter != 0)
 {
 average = sum / counter;
 }
 else
 {
 average = -1;
 }
· (Download this code)
1. Write a program that asks the user to enter a sentence, and store it in a file where the maximum width is 40: if the string entered is more than 40 characters long, then it should span over multiple lines of no more than 40 characters each. For example, if the user enters
· In publishing and graphic design, Lorem ipsum is a placeholder text commonly used to demonstrate the visual form of a document or a typeface without relying on meaningful content. Lorem ipsum may be used as a placeholder before the final copy is available.
· then the text file should contain
· In publishing and graphic design, Lorem
ipsum is a placeholder text commonly use
d to demonstrate the visual form of a do
cument or a typeface without relying on
meaningful content. Lorem ipsum may be u
sed as a placeholder before the final co
py is available.
· Solution
· string filePath = Path.Combine(
 AppDomain.CurrentDomain.BaseDirectory,
 "TextTruncate.txt"
);
 Console.WriteLine("Enter a string.");
 string uString = Console.ReadLine();

 const int MAXWIDTH = 40;

 try
 {
 StreamWriter sw = new StreamWriter(filePath);
 while (uString.Length > MAXWIDTH)
 {
 sw.WriteLine(uString.Substring(0, MAXWIDTH));
 uString = uString.Substring(MAXWIDTH);
 }
 sw.WriteLine(uString);
 sw.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
· (Download this code)
1. Write a program that counts the number of words in itself! Ideally, empty lines should not count toward the word count.
· Hint: Program.cs is normally located at
· Path.Combine(
 new DirectoryInfo(Directory.GetCurrentDirectory()).Parent.Parent.ToString(),
 "Program.cs"
)
· Solution
· ﻿using System;
using System.IO;

class Program
{
 static void Main()
 {
 // The following goes to /bin/Debug, then two folders up,
 // where Program.cs is located.
 string filePath = Path.Combine(
 new DirectoryInfo(
 Directory.GetCurrentDirectory()
).Parent.Parent.ToString(),
 "Program.cs"
);

 if (!File.Exists(filePath))
 {
 Console.WriteLine(
 "There seems to be an issue. Impossible to locate Program.cs"
);
 }
 else
 {
 Console.WriteLine("Program.cs located, processing.");
 string line;
 string[] words;
 int wCount = 0;
 try
 {
 StreamReader sr = new StreamReader(filePath);
 line = sr.ReadLine();
 while (line != null)
 {
 words = line.Split(
 new string[] { " " },
 StringSplitOptions.RemoveEmptyEntries
);
 wCount += words.Length;
 line = sr.ReadLine();
 }
 sr.Close();
 Console.WriteLine(
 "Your program contains " + wCount + " words!"
);
 // Should display "Your program contains 121 words!"
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
 }
 }
}
· (Download this code)
