Contents

Dictionary (Solutions) 1
Multiple Choices o 1
Problem 1

Dictionary (Solutions)

Multiple Choices
1. Put a checkmark in the box corresponding to true statements.

X Any datatype can be used for keys, but they tend o be "sim-
pler” than the datatype used for values.

O Two pairs (or Cells) with the same key can be stored in a dic-
tionary, provided they have different values.

X A collision occurs when two keys (or, in general, two pieces of
data) have the same hash.

X Open addressing and (separate) chaining are two methods to

resolve collisions.
O Clustering is what makes dictionaries process data faster.

Comments on the solution

o Note that a collision actually occurs when the keys have the
same hash modulo the array size in our case.

o Clustering is actually negative: it means that data is often
stored in the same place in the dictionary, making it more
computationally costly to find the data.

Problem

1. Consider the implementation of “simple” dictionary SDictionary
below:

using System;

public class SDictionary

{
private class Cell

{
public string Value { get; set; }
public string Key { get; set; }

public Cell(
string keyP,

}

string valueP

)

{
Key = keyP;
Value = valueP;
I
public override string ToString()
{
return Key + ":" + Value;
}

I
private Cell[] table;

public SDictionary(
int size = 31
)
{
table = new Cell[size];

}

public int GetIndex(string keyP, int countP)
! return ((int)(keyP[0]) + countP) %

<~ table.Length;
;ublic void Add(string keyP, string valueP)
{ 0.

int count 5
GetIndex(keyP, count);

int index

while (
table[index] !'= null

)

{

count++;
index = GetIndex(keyP, count);
¥
table[index] = new Cell(
keyP,
valueP
);

(Download this code)

https:/princomp.github.io/code/projects/SDictionary.zip

Remember that, for example, "Bob"[0] is 'B' and use the corre-
spondence below between characters and their integer represen-
tation to help you (i.e., (int) 'B' is 66):

ABCDEFGHI JKLMNOPQRSTUVWXYZ
6566676869707172737475767778798081828384858687 888990

(a) Fill the table array below after the following have been per-
formed:

SDictionary friends = new SDictionary(11);
friends.Add("Bob", null);
friends.Add("Pete", null);
friends.Add("Mary", null);
friends.Add("Lora", null);

o1 2 3 45 6 7 8 9 10

Solution

0 1 2 3 4 5 6 7 8 9 10
“Bob"*Maryfull "Pete’hull null null null null null “Lora”

The important point is to readlize that

Expression Value

"Bob"[0] 'B'
(int)'B' 66
66 % 11 0
“Mary“[@] '‘M!
(int)'M' 77
77 % 11 0

So "Bob” and “Mary” are both stored at index 0. “Bob” is in-
serted first at index 0, and since the Add method use linear
open addressing, “Mary” is stored at the next available index,
1 in this case.

(b) What would happen if friends.Add("Lora", null); was
executed again? Is it what is expected from a dictionary?

Solution

“Lora” would be inserted at index 2: 10, 0 and 1 being taken,
Add goes to the next available index, 2. This is not expected,
since a dictionary should reject entering fwo values with the
same key.

(c) Write a ToString method for the SDictionary class, that re-
turns a string containing all the keys and values stored in the

dictionary.
Solution
public override string ToString()
{
string returned =
for Zint 1 =0; 1 < table.Length; i++)
{
returned += String.Format("\nIndex {0,
o =23 ", 1)
if (table[i] != null)
{
returned += String.Format(
" {0, -10}| {1, -10} |",
table[i1].Key,
table[1].Value
)3
}
}
return returned;
}

(Download this code)

(d) What would happen if we were to try to insert 12 elements in
our friends object?

Solution

When trying to insert the 12th element in the array of size 11, Add
would loop forever, always circling through the array, looking
for a cell containing null, while none are left.

(e) Consider the following Delete method:

public bool Delete(string keyP)
{

https:/princomp.github.io/code/projects/SDictionary_solution.zip

int count = 0;

int index GetIndex(keyP, count);
bool found = false;

while (table[index] != null && !found)

{
if (table[index].Key.Equals(keyP))
{
found = true;
table[index] = null;
}
count++;
index = GetIndex(keyP, count);
}

return found;

}
(Download this code)

Complete the series of instructions below such that demo .Delete(error)
would return false even though the string error is the key of
a value present in the demo dictionary object.

class Program{

static void Main(){

SDictionary demo = new SDictionary(); //
~ Complete 1it.

string error = //
o Fill me
// To be completed.
Console.WriteLine($"{error} was in demo:

«» q{demo.Delete(error)}.");
}

}

Solution

The solution is to be in a position where the error value is “hid-
den after” a null value:

SDictionary demo = new SDictionary(2);
string error = "Alex";
demo.Add("Alice", null);
demo.Add(error, null);
demo.Delete("Alice");
Console.WriteLine($"{error} is in

o dictionary: {demo.Delete(error)}.");

(Download this code)

https:/princomp.github.io/code/projects/SDictionary_solution.zip
https:/princomp.github.io/code/projects/SDictionary_solution.zip

	Dictionary (Solutions)
	Multiple Choices
	Problem

