
Contents

Description 1
Phase 1 . 1

Purpose: . 1
Skills . 1
Knowledge: . 2
Tasks . 2

Phase 2 . 4
Purpose . 4
Skills . 5
Knowledge . 5
Tasks . 5

Phase 3 . 8
Purpose . 8
Skills . 8
Knowledge . 8
Tasks . 8
Solution . 11

Description

Below is the combined descriptions of each phase of the “Fighting
game” project. If working through this project for the first time, it is
encouraged to work on one phase at a time, ensuring your execution
of the project is correct by comparing with our solution before moving
on.

Phase 1
Purpose:

This second project will be spread across three phases to give you the ex-
perience of implementing a class and feature-rich program utilizing said
class. This first phase consists of implementing a starting form of the class
you will be working with until the end of the semester. This class will pri-
marily consist of setting up attributes and their respective getters/setters,
as well as some unique methods needed to define the core functionality
of the class being created.

Skills

For this project, you will need to:

1

• Exhibit an understanding of IDE features pertaining to object-
oriented development,

• Analyze a simple design document,
• Implement a simple class containing multiple attributes and meth-

ods, and
• Write a simple test program for your implementation.

Knowledge:

This assignment will familiarize you with the following important skills:

• How to read a UML diagram,
• How to interpret a series of simple instructions, and
• How to manipulate objects.

Tasks

Challenge

In short You will be creating a Fighterclass, which will contain the core
functionality of a character in some turned-based RPG type game.

In more details Consider the following UML diagram for the Fighter
class:

In order, the attributes will store:

• The name of the fighter,
• The level of the fighter,
• The current experience the fighter has,
• The max experience the fighter needs to level up,
• The amount of hit points (HP) the fighter has,

– This is a percentage, that is, the value should only be between
0 and 1, and be displayed using the P format specifier.

• The attack stat of the fighter, and
• The defense stat of the fighter.

The methods to be implemented are as follows:

• Getters for all attributes,
• Setters for name, attack, and defense,
• A LevelUp method

– Increments level, attack, defense, and maxExp by a prede-
termined amount.
∗ level: 1
∗ attack: 3
∗ defense: 3

2

Figure 1: A UML diagram for the Fighter[”Fighter Pt. 1”] class (text ver-
sion2)

3

∗ maxExp: 50
– Resets hitPts back to full health (that is, back to 1)

• A TakeDamage feature:
– Takes in attackP as a parameter (that is, the damage dealt

by the opposing fighter)
– Deduct the result of the following formula from hitPts

∗ ((decimal)attackP/10) / (((decimal)defense/10) + 4m)
– If hitPts is below 0, set hitPts to 0.

• A ToString method
– This should neatly display all the attributes for the class.

Example Once creating my fighter, Totally McRealGuy, this is what I dis-
play to the console:

Name: Totally McRealGuy
Level: 0
HP: 100.00%
Exp: 0/100
Attack: 15
Defense: 5

Notice how hitPts (abbreviated as HP) is displayed as a percentage
and attack and defense was set.

TotallyMcRealGuy leveled up! Let’s check his stats now:

Name: Totally McRealGuy
Level: 1
HP: 100.00%
Exp: 0/150
Attack: 18
Defense: 8

Notice how maxExp, attack, and defense has incremented.

Bonus We’ll add two new constructors to the class, one that takes no
parameters, and another that takes in parameters for name, attack, and
defense. The former should have an empty body, while the latter should
assign the parameters to their respective attributes.

Phase 2
Purpose

This is the second phase of your three-phase project for the course. This
phase will consist of extending your Fighter class to add some more func-

4

tionality, then creating a user-interactive program that collectsthe data
from the user to make a Fighter object with the class.

Skills

For this project, you will need to:

• Exhibit an understanding of IDE features pertaining to object-
oriented development,

• Expand on the class you made last time with new methods,
• Construct a interactive program,
• Validate inputs from the user using boolean logic, and
• Create an object from the class you constructed.

Knowledge

This assignment will familiarize you with the following important skills:

• How to manipulate objects,
• How to use boolean systems (if/switch, loops), and
• How to validate user input

Tasks

Challenge

In short You will be adding four additional methods into the Fighter
class you constructed in phase 1, then implementing a program to con-
struct a Fighter object based on the validated input given by the user.

In more details First, download the Project 2 Phase 2 Template: [LINK
HERE]

(Note: You must use the template to complete this project unless you got
a perfect score on Phase 1)

Consider the updated UML Diagram for the Fighter class:

In Fighter.cs…

• Add a no-args constructor that sets the attribute values to:
– name: “Default”
– level: 1
– curExp: 0
– maxExp: 100
– hitPts: 1m
– attack: 10

5

Figure 2: A UML diagram for the Fighter[”Fighter Pt. 2”] class (text ver-
sion4)

6

– defense: 10
• Add a populated constructor, which will use the same default val-

ues above except for the attributes that have parameters
• Add an AddExp method

– Takes in expAmt and adds this to curExp.
– If curExp exceeds maxExp, deduct maxExp from curExp and

call LevelUp
• Add a Heal method

– Sets hitPts to 1

In Program.cs…

• Create a program that prompts the user to input the values to cre-
ate your fighter.

– Ask the user for the name of their fighter (no validation required
on this part)

– Ask the user for their attack and defense stats
∗ Attack and defense must be non-negative integer values

whose combined total does not exceed 20
– Once done, should display the newly created character to the

console.

Example Here is an example of execution, where the user input is
u ͟ n ͟ d ͟ e͟ r ͟ l͟ i͟ n͟ e ͟ d͟, and hitting “enter” is represented by “↵͟ ”: s

MAKE YOUR FIGHTER!!!!
Name: T ͟ o ͟ t ͟ a ͟ l ͟ l ͟ y ͟ ͟ M ͟ c ͟ R ͟ e ͟ a ͟ l ͟ g ͟ u ͟ y ͟ ↵͟
Set your attack and defense (combined total must not

exceed 20).↪
Attack: n ͟ o ͟ ↵͟
Invalid entry, try again.
Attack: 2 ͟ 1 ͟ ↵͟
Invalid entry, try again.
Attack: 1 ͟ 5 ͟ ↵͟
Defense: 1 ͟ 5 ͟ ↵͟
Combined total exceeds 20, try again.
Set your attack and defense (combined total must not

exceed 20).↪
Attack: 1 ͟ 5 ͟ ↵͟
Defense: 5 ͟ ↵͟
YOUR FIGHTER HAS BEEN CREATED!!!
Name: Totally McRealguy
Level: 1
HP: 100.00%
Exp: 0/100
Attack: 15
Defense: 5

7

Bonus Create a third constructor that takes in only a name parameter
and creates a fighter using randomly generated attack and defense val-
ues. These values must also not allow the combined total of these to be
greater than 20. (For information on Random5)

Phase 3
Purpose

In this final phase of your second project, you will be utilizing the full extent
of your Fighter class to make a game loop focused on the player fighter
fighting randomly generated opponent fighters.

Skills

For this project, you will need:

• Exhibit an understanding of IDE features pertaining to object-
oriented development,

• Expand on the class you made last time with new methods,
• Construct a interactive program,
• Validate inputs from the user using boolean logic, and
• Create an object from the class you constructed.

Knowledge

This assignment will familiarize you with the following important skills:

• How to manipulate objects,
• How to generate random numbers,
• How to use boolean systems (if/switch, loops), and
• How to validate user input

Tasks

Challenge

In short You will be adding one more method to your Fighter class
before extending your implementation in Program.cs to make a game
loop where the player fighter fights rounds of randomly generated oppo-
nent fighters.

5https:/princomp.github.io/lectures/misc/random

8

https:/princomp.github.io/lectures/misc/random

In more details First, download the Project 2 Phase 3 Template: [LINK
HERE]

(Note: You must use the template to complete this project unless you got
a perfect score on Phase 2)

Consider the updated UML Diagram for the Fighter class:

In Fighter.cs… - Add one more constructor that takes in a string
parameter for name and a byte parameter for the player’s level (named
playerLvl in the UML) - Randomly generates atk and def values
(combined total must not exceed 20) - Set attributes to the following
values: - name: name parameter - level: playerLvl - curExp: 0 -
maxExp: 50 * level - hitPts: 1 - attack: atk + (3 * (level - 1)) -
defense: def + (3 * (level - 1))

In Program.cs… - (Optional step for neatness) After character creation,
prompt user to press any key to continue, then clear the screen once
any key is pressed - Create the game loop. That is, make player fighter
fight against randomly generated opponent fighters until player fighter
is defeated - Loop should proceed as follows: - Creates a new random
opponent fighter - Prints player and opponent fighter stats - Ask player
to pick move (either attack or defend) and validate input to ensure that
player enters a valid move - Randomly decide opponent’s move - Do
the following based on both fighters’ moves… - If player attacks… - and
opponent attacks, then both take damage with the opposing fighter’s
attack stat - and opponent defends, then opponent takes damage with
the player’s attack stat / 2 - If player defends… - and opponent attacks,
then player takes damage with the opponent’s attack stat / 2 - and op-
ponent defends, then nothing happens - If opponent is defeated, then…
- Heal player - Add 25 * opponent's level exp to player’s curExp -
Continue to next round - If player is defeated, then exit loop and display
how many rounds the player beat.

Example See the video demo on D2L

Bonus For this final phase, there are two bonuses: 1. Modify the ToString
method in Fighter.cs to display like this:

Name: Totally McRealguy
Level: 1
HP: [█████████████████████████] 100.00%
Exp: 0/100
Attack: 10
Defense: 10

• Note: The number of blocks displayed should be based on how
much health the fighter has, and should center so that if blocks are

9

Figure 3: A UML diagram for the Fighter[”Fighter Pt. 3”] class (text ver-
sion7)

10

missing (e.g., HP: [████████████] 50.00%) The
escape character for the block is \u2588.

• Hint: See the official documentation for string interpolation8 and a
relevant StackOverflow post about repeating characters9.

2. Add a new move that either fighter can use, Heavy Attack, which
will add the additional conditions for each move:

• If player attacks…
– and opponent heavy attacks, then both take damage with

the opposing fighter’s attack stat * 2
• If player defends…

– and opponent heavy attacks, then player takes damage with
the opponent’s attack stat

• If player heavy attacks…
– and opponent attacks, then both take damage with the op-

posing fighter’s attack stat * 2
– and opponent defends then opponent takes damage with

the player’s attack stat
– and opponent heavy attacks, then both take damage with

the opposing fighter’s attack stat * 4

Solution

Project 2 Phase 3 Solution [LINK HERE]

8https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/inter
polated

9https://stackoverflow.com/a/411762

11

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated
https://stackoverflow.com/a/411762

	Description
	Phase 1
	Purpose:
	Skills
	Knowledge:
	Tasks

	Phase 2
	Purpose
	Skills
	Knowledge
	Tasks

	Phase 3
	Purpose
	Skills
	Knowledge
	Tasks
	Solution

