
Contents

AVL Trees 1
Description . 1

Purpose . 1
Challenge . 1
Bonuses . 2
Submission . 2

AVL Trees

Description
Purpose

This project is designed to help you develop a better understanding of bi-
nary search trees and AVL trees. It requires you to manipulate trees in var-
ious ways, and to understand the different cases requiring re-balancing
a tree.

Challenge

In short Our goal is improve the second implementation of AVL tree and
to understand it better. You will be asked to write additional methods,
develop new examples, and comment your code.

In more details We want to implement a more pedagogical version of
AVL trees, where operations such as re-balancing are easier to observe
step-by-step.

• Start by downloading the existing implementation,
• Add your name in a delimited comment at the top of Program.cs,
• Observe how there is currently some illustration as to how
RotateleftChild and DoubleleftChild operate, using the
public methods Rotateleft and Doubleleft, when trees are
unbalanced after insertion.

Your goal is to edit and expand the solution as follows:

• Inside Program.cs, illustrate similarly with Rotateright and
Doubleright from IBtree how RotaterightChild and
DoublerightChild operate. Create a tree by inserting val-
ues, note (in the comments) why it becomes un-balanced, and
how it is possible to re-balance it using one of the aforementioned
method. Create another example to illustrate the other method.

1

https://princomp.github.io/lectures/data/AVLtrees#computing-the-height-on-the-fly
https://princomp.github.io/code/projects/AVLTree_I.zip

• Inside Program.cs, create a BSTree tree object that is “overall”
balanced, but that has sub-tree(s) with a balance greater than or
equal to 2 or less than or equal to -2.

• Create an “Improved” AVL tree class called IAVLTree that inherits
from AVLTree, and contains a Depth method that computes the
depth of a value: given a value of type T, the method should return
the depth of the node containing this value, or -1 if this value is not
in the tree. Remember that

The depth of a node is the number of edges from the node
to the tree’s root node.

• Inside Program.cs, write a snippet of code that

– Create an IAVLTree containing ints,
– Insert 10 random values between 1 and 49 inside of it,
– Ask the user to enter a number,
– Displays the depth of the number in the tree.

Pay attention to details:

• Your program should catch possible exceptions.
• Do not modify any file other than Program.cs, do not create any

file other than IAVLTree.cs. If you really need to edit some other
file, please indicate it very clearly at the beginning of Program.cs.

• Do not load any additional libraries, in particular, do not use C#
native lists or LINQ.

Bonuses

Bonus points will be given if:

• (easy) Illustrate how
– RotaterightChild,
– RotateleftChild,
– DoublerightChild or
– DoubleleftChild

operate after a tree becomes unbalanced after a deletion (the
examples above had trees unbalanced following an insertion).

• (medium) Override the Insert from AVLTree in your IAVLTree
class so that it uses SubtreeBalance (like Delete do). Write good
test cases to make sure your method behaves as expected.

Submission

Please, follow our guideline on project submission. In particular, make
sure you write your name and the date in a delimited comment at the
beginning of your file.

2

https://stackoverflow.com/questions/2603692/what-is-the-difference-between-depth-and-height-in-a-tree
https:/princomp.github.io/projects/submission

	AVL Trees
	Description
	Purpose
	Challenge
	Bonuses
	Submission

