
Contents

Polymorphism 1
Motivation . 1
Inheriting Attributes, Properties and Methods 1
Polymorphism and References 2
Solving Ambiguity by Overriding 3

For Methods . 3
For Attributes and Properties 5

Polymorphism

Motivation
Inheritance1 provides another very useful mechanism: (subtype) poly-
morphism2. In a nutshell, the idea is that if a Pyramid3 class extends
the Rectangle class, then a Pyramid object can still access all the
Rectangle’s public methods, properties and attributes. Indeed, a
Pyramid is a Rectangle: this is precisely what polymorphism means.

While the example below is abstract, it can be easily instantiated to e.g.,
a Cat class inheriting from a Pet class or a Pyramid class inheriting from
a Rectangle class.

Inheriting Attributes, Properties and Methods
Consider the following two classes:

class Class1
{
private string attribute1;

public void SetAttribute1(string aP)
{
attribute1 = aP;

}

public string Property1 { get; set; }
}

class Class2 : Class1

1https:/princomp.github.io/lectures/oop/inheritance
2https://en.wikipedia.org/wiki/Polymorphism_(computer_science)#Subtyping
3Technically, a “rectangular pyramid”, if we require the pyramid to have a rectangle as

its base.

1

https:/princomp.github.io/lectures/oop/inheritance
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)#Subtyping

{
public string Property2 { get; set; }

}

Then,

• Any Class1 object has an attribute attribute1, a property
Property1 and a method SetAttribute1.

• Any Class2 object has the attribute, property and method of a
Class1 object, and in addition, it has a Property2 property.

This means that the following code is valid:

class Program
{
static void Main()
{
Class1 object1 = new Class1();
object1.SetAttribute1("Test");
object1.Property1 = "Test";

Class2 object2 = new Class2();
object2.SetAttribute1("Test");
object2.Property1 = "Test";
object2.Property2 = "Test";

}
}

Note, however, that object1.Property2 = "Test"; would not com-
pile, since an object from Class1 cannot access the attributes, proper-
ties and methods of Class2. Stated differently, an object in Class2 is
a(n object in) Class1, but the converse is not true: an object in Class1
is not an object in Class2.

Polymorphism and References
Note that a Class1 object can be created using a Class2 constructor,
since an object in Class2 is a(n object in) Class1. Formally, we can
write:

Class1 object3 = new Class2();

and then manipulate object3 like any other *object from Class1 (it is,
in a way, “truncated”). In particular, we can use

object3.Property1 = "Test";

but object3.Property2 = "Test"; would not compile since we
would be trying to access a property of Class2 with a Class1 object.

2

Remember that an object in Class1 is not* an object in Class2, and
that the way we declared it, object3 is a Class1 object.

Solving Ambiguity by Overriding
For Methods

Now, consider the following class implementation and usage:

class Class1
{
public string Test()
{
return "Class1";

}
}

class Class2 : Class1
{
public string Test()
{
return "Class2";

}
}

using System;

class Program
{
static void Main()
{
Class1 object1 = new Class1();
Console.WriteLine(object1.Test());

Class2 object2 = new Class2();
Console.WriteLine(object2.Test());

}
}

Console.WriteLine(object1.Test()); will display “Class1”: there is
no ambiguity, since object1 is a Class1 object, it can access only the
methods in its class.

However, the situation is less clear for Console.WriteLine(object2.Test());:
since object2 is “at the same time” a Class1 and a Class2 object,
which method will be called? In this case, “Class2” will be displayed
since C# prefers the “closest” method available (that is, the one in the
same class as the calling object). However, a warning will be issued by

3

the compiler because the Testmethod in Class2 “hides” the inherited
method Test from Class1.

A much better code explicitly instructs C# to override Class1’s Test
method with Class2’s Test method. However, this further requires
Class1’s Test method to explicitly give permission to be overriden,
using the virtual keyword:

class Class1
{
public virtual string Test()
{
return "Class1";

}
}

class Class2 : Class1
{
public sealed override string Test()
{
return "Class2";

}
}

class Class3 : Class2
{
public override string Test()
{
return "Class 3";

}
}

This program will also display, as expected,

Class1
Class2

but this time the compiler will not complain: there is no ambiguity, as
Class2’s Testmethodmust explicitly take precedence when an object
in Class2 is calling a Testmethod.

Note that by default, methods are non-virtual, and non-virtual method
cannot be overridden. However, overriding methods are treated as vir-
tual and can be overridden themselves, unless they use the sealed key-
word, as follows:

public override sealed string Test(){…}

Such amethod cannot be overridden by classes inheriting from the class
to which they belong.

4

Last but not least, note that an override method must have the same
signature as the overridden method.

For Attributes and Properties

Virtual attributes and properties can similarly be overridden, provided of
course the overriding property or attribute has the same datatype and
name as the virtual method or property. Consider for instance an int
Property in a Class1 class with no requirement that is inherited by a
Class2 that wish to forbid negative values. One could do the following:

class Class1
{
public virtual int Property { get; set; }

}

using System;

class Class2 : Class1
{
private int attribute;
public override int Property
{
set
{

if (value < 0)
throw new ArgumentOutOfRangeException();

else
attribute = value;

}
get { return attribute; }

}
}

Note that the property in Class2 has a backing field while there is no
need for it in Class1.

The followingwould then throwanexceptionwhen the object2.Property = -12;
statement would be executed:

using System;

class Program
{
static void Main()
{
Class1 object1 = new Class1();
object1.Property = -12;

5

Class2 object2 = new Class2();
try
{

object2.Property = -12;
}
catch
{

Console.WriteLine(
"In Class2, Property cannot be set to a negative

value."↪
);

}
}

}

Note that, as for methods, overriding properties are by default virtual and
can be overridden, for example as follows:

class Class3 : Class2
{
public override int Property { set; get; }

}

6

	Polymorphism
	Motivation
	Inheriting Attributes, Properties and Methods
	Polymorphism and References
	Solving Ambiguity by Overriding
	For Methods
	For Attributes and Properties

