
Contents

Introduction 1
Class and Object Basics . 1
Writing Our First Class . 2
Using Our Class . 5
Flow of Control with Objects 7
Introduction to UML . 12
Variable Scope . 14
Constants . 18
Reference Types: More Details 18

Introduction

Class and Object Basics
• Classes vs. Objects

– A class is a specification, blueprint, or template for an object;
it is the code that describes what data the object stores and
what it can do

– An object is a single instance of a class, created using its “tem-
plate.” It is executing code, with specific values stored in each
variable

– To instantiate an object is to create a new object from a class
• Object design basics

– Objects have attributes: data stored in the object. This data is
different in each instance, although the type of data is defined
in the class.

– Objects have methods: functions that use or modify the ob-
ject’s data. The code for these functions is defined in the class,
but it is executed on (and modifies) a specific object

• Encapsulation: An important principle in class/object design
– Attribute data is stored in instance variables, a special kind of

variable
– Called “instance” because each instance, i.e. object, has its

own copy of them
– Encapsulation means instance variables (attributes) are “hid-

den” inside an object: other code cannot access them di-
rectly
∗ Only the object’s own methods can access the instance

variables
∗ Other code must “ask permission” from the object in order

to read or write the variables

1

Writing Our First Class
• Designing the class

– Our first class will be used to represent rectangles; each
instance (object) will represent one rectangle

– Attributes of a rectangle:
∗ Length
∗ Width

– Methods that will use the rectangle’s attributes
∗ Get length
∗ Get width
∗ Set length
∗ Set width
∗ Compute the rectangle’s area

– Note that the first four are a specific type of method called
“getters” and “setters” because they allow other code to read
(get) or write (set) the rectangle’s instance variables while re-
specting encapsulation

The Rectangle class:

class Rectangle
{
private int length;
private int width;

public void SetLength(int lengthParameter)
{
length = lengthParameter;

}

public int GetLength()
{
return length;

}

public void SetWidth(int widthParameter)
{
width = widthParameter;

}

public int GetWidth()
{
return width;

}

public int ComputeArea()

2

{
return length * width;

}
}

Let’s look at each part of this code in order.

• Attributes
– Each attribute (length and width) is stored in an instance vari-

able
– Instance variables are declared similarly to “regular” variables,

but with one additional feature: the access modifier
– Syntax: [access modifier] [type] [variable name]
– The access modifier can have several values, the most com-

mon of which are public and private. (There are other ac-
cess modifiers, such as protected and internal, but in this
class we will only be using public and private).

– An access modifier of private is what enforces encapsulation:
when you use this access modifier, it means the instance vari-
able cannot be accessed by any code outside the Rectangle
class

– The C# compiler will give you an error if you write code that
attempts to use a private instance variable anywhere other
than a method of that variable’s class

• SetLength method, an example of a “setter” method
– This method will allow code outside the Rectangle class to

modify a Rectangle object’s “length” attribute
– Note that the header of this method has an access modifier,

just like the instance variable
– In this case the access modifier is public because we want to

allow other code to call the SetLength method
– Syntax of a method declaration: [access modifier] [return type] [method name]([parameters])
– This method has one parameter, named lengthParameter,

whose type is int. This means the method must be called with
one argument that is int type.
∗ Similar to how Console.WriteLine must be called with

one argument that is string type – the Console.WriteLine
declaration has one parameter that is string type.

∗ Note that it is declared just like a variable, with a type and
a name

– A parameter works like a variable: it has a type and a value,
and you can use it in expressions and assignment

– When you call a method with a particular argument, like 15, the
parameter is assigned this value, so within the method’s code
you can assume the parameter value is “the argument to this
method”

– The body of the SetLength method has one statement, which

3

assigns the instance variable length to the value contained
in the parameter lengthParameter. In other words, whatever
argument SetLength is called with will get assigned to length

– This is why it is called a “setter”: SetLength(15) will set length
to 15.

• GetLength method, an example of a “getter” method
– This method will allow code outside the Rectangle class to

read the current value of a Rectangle object’s “length” at-
tribute

– The return type of this method is int, which means that the
value it returns to the calling code is an int value

– Recall that Console.ReadLine() returns a string value to
the caller, which is why you can write string userInput = Console.ReadLine().
The GetLength method will do the same thing, only with an
int instead of a string

– This method has no parameters, so you do not provide any ar-
guments when calling it. “Getter” methods never have param-
eters, since their purpose is to “get” (read) a value, not change
anything

– The body of GetLength has one statement, which uses a new
keyword: return. This keyword declares what will be returned
by the method, i.e. what particular value will be given to the
caller to use in an expression.

– In a “getter” method, the value we return is the instance vari-
able that corresponds to the attribute named in the method.
GetLength returns the length instance variable.

• SetWidth method
– This is another “setter” method, so it looks very similar to
SetLength

– It takes one parameter (widthParameter) and assigns it to the
width instance variable

– Note that the return type of both setters is void. The return
type void means “this method does not return a value.”
Console.WriteLine is an example of a void method we’ve
used already.

– Since the return type is void, there is no return statement in
this method

• GetWidth method
– This is the “getter” method for the width attribute
– It looks very similar to GetLength, except the instance variable

in the return statement is width rather than length
• The ComputeArea method

– This is not a getter or setter: its goal is not to read or write a
single instance variable

– The goal of this method is to compute and return the rectan-
gle’s area

4

– Since the area of the rectangle will be an int (it is the product
of two ints), we declare the return type of the method to be
int

– This method has no parameters, because it does not need any
arguments. Its only “input” is the instance variables, and it will
always do the same thing every time you call it.

– The body of the method has a return statement with an ex-
pression, rather than a single variable

– When you write return [expression], the expression will
be evaluated first, then the resulting value will be used by the
return command

– In this case, the expression length * width will be evaluated,
which computes the area of the rectangle. Since both length
and widthare ints, the int version of the *operator executes,
and it produces an int result. This resulting int is what the
method returns.

Using Our Class
• We’ve written a class, but it does not do anything yet

– The class is a blueprint for an object, not an object
– To make it “do something” (i.e. execute some methods), we

need to instantiate an object using this class
– The code that does this should be in a separate file (e.g. Pro-

gram.cs), not in Rectangle.cs
• Here is a program that uses our Rectangle class:

using System;

class Program
{
static void Main(string[] args)
{
Rectangle myRectangle = new Rectangle();
myRectangle.SetLength(12);
myRectangle.SetWidth(3);
int area = myRectangle.ComputeArea();
Console.WriteLine(

"Your rectangle's length is "
+ $"{myRectangle.GetLength()}, and its width is "
+ $"{myRectangle.GetWidth()}, so its area is

{area}."↪
);

}
}

5

• Instantiating an object
– The first line of code creates a Rectangle object
– The left side of the = sign is a variable declaration – it declares

a variable of type Rectangle
∗ Classes we write become new data types in C#

– The right side of the = sign assigns this variable a value: a
Rectangle object

– We instantiate an object by writing the keyword new followed
by the name of the class (syntax: new [class name]()). The
empty parentheses are required, but we will explain why later.

– This statement is really an initialization statement: It declares
and assigns a variable in one line

– The value of the myRectangle variable is the Rectangle ob-
ject that was created by new Rectangle()

• Calling setters on the object
– The next two lines of code call the SetLength and SetWidth

methods on the object
– Syntax: [object name].[method name]([argument]).

Note the “dot operator” between the variable name and the
method name.

– SetLength is called with an argument of 12, so lengthParameter
gets the value 12, and the rectangle’s length instance vari-
able is then assigned this value

– Similarly, SetWidth is called with an argument of 3, so the rect-
angle’s width instance variable is assigned the value 3

• Calling ComputeArea
– The next line calls the ComputeArea method and assigns its re-

sult to a new variable named area
– The syntax is the same as the other method calls
– Since this method has a return value, we need to do something

with the return value – we assign it to a variable
– Similar to how you must do something with the result (return

value) of Console.ReadLine(), i.e. string userInput = Console.ReadLine()
• Calling getters on the object

– The last line of code displays some information about the rect-
angle object using string interpolation

– One part of the string interpolation is the area variable, which
we’ve seen before

– The other interpolated values are myRectangle.GetLength()
and myRectangle.GetWidth()

– Looking at the first one: this will call the GetLength method,
which has a return value that is an int. Instead of storing the
return value in an int variable, we put it in the string interpola-
tion brackets, which means it will be converted to a string using
ToString. This means the rectangle’s length will be inserted
into the string and displayed on the screen

6

Flow of Control with Objects
• Consider what happens when you have multiple objects in the

same program, like this:

class Program
{

static void Main(string[] args)
{
Rectangle rect1;
rect1 = new Rectangle();
rect1.SetLength(12);
rect1.SetWidth(3);
Rectangle rect2 = new Rectangle();
rect2.SetLength(7);
rect2.SetWidth(15);

}
}

– First, we declare a variable of type Rectangle
– Then we assign rect1 a value, a new Rectangle object that

we instantiate
– We call the SetLength and SetWidth methods using rect1,

and the Rectangle object that rect1 refers to gets its length
and width instance variables set to 12 and 3

– Then we create another Rectangle object and assign it to the
variable rect2 . This object has its own copy of the length
and width instance variables, not 12 and 3

– We call the SetLength and SetWidth methods again, using
rect2 on the left side of the dot instead of rect1. This means
the Rectangle object that rect2 refers to gets its instance vari-
ables set to 7 and 15, while the other Rectangle remains un-
modified

• The same method code can modify different objects at different
times

– Calling a method transfers control from the current line of code
(i.e. in Program.cs) to the method code within the class (Rect-
angle.cs)

– The method code is always the same, but the specific object
that gets modified can be different each time

– The variable on the left side of the dot operator determines
which object gets modified

– In rect1.SetLength(12), rect1 is the calling object, so
SetLength will modify rect1
∗ SetLength begins executing with lengthParameter

equal to 12

7

∗ The instance variable length in length = lengthParameter
refers to rect1’s length

– In rect2.SetLength(7), rect2 is the calling object, so
SetLength will modify rect2
∗ SetLength begins executing with lengthParameter

equal to 7
∗ The instance variable length in length = lengthParameter

refers to rect2’s length

Accessing object members

• The “dot operator” that we use to call methods is technically the
member access operator

• A member of an object is either a method or an instance variable

• When we write objectName.methodName(), e.g. rect1.SetLength(12),
we are using the dot operator to access the “SetLength” member
of rect1, which is a method; this means we want to call (execute)
the SetLength method of rect1

• We can also use the dot operator to access instance variables, al-
though we usually do not do that because of encapsulation

• If we wrote the Rectangle class like this:

class Rectangle
{

public int length;
public int width;

}

Then we could write a Main method that uses the dot operator to
access the length and width instance variables, like this:

static void Main(string[] args)
{

Rectangle rect1 = new Rectangle();
rect1.length = 12;
rect1.width = 3;

}

But this code violates encapsulation, so we will not do this.

Method calls in more detail

• Now that we know about the member access operator, we can
explain how method calls work a little better

8

• When we write rect1.SetLength(12), the SetLength method
is executed with rect1 as the calling object – we are accessing
the SetLength member of rect1 in particular (even though every
Rectangle has the same SetLength method)

• This means that when the code in SetLength uses an instance vari-
able, i.e. length, it will automatically access rect1’s copy of the
instance variable

• You can imagine that the SetLength method “changes” to this
when you call rect1.SetLength():

public void SetLength(int lengthParameter)
{

rect1.length = lengthParameter;
}

Note that we use the “dot” (member access) operator on rect1 to
access its length instance variable.

• Similarly, you can imagine that the SetLength method “changes”
to this when you call rect2.SetLength():

public void SetLength(int lengthParameter)
{

rect2.length = lengthParameter;
}

• The calling object is automatically “inserted” before any instance
variables in a method

• The keyword this is an explicit reference to “the calling object”

– Instead of imagining that the calling object’s name is inserted
before each instance variable, you could write the SetLength
method like this:

public void SetLength(int lengthParameter)
{

this.length = lengthParameter;
}

– This is valid code (unlike our imaginary examples) and will work
exactly the same as our previous way of writing SetLength

– When SetLength is called with rect1.SetLength(12), this
becomes equal to rect1, just like lengthParameterbecomes
equal to 12

– When SetLength is called with rect2.SetLength(7), this
becomes equal to rect2 and lengthParameter becomes
equal to 7

9

Methods and instance variables

• Using a variable in an expression means reading its value

• A variable only changes when it is on the left side of an assignment
statement; this is writing to the variable

• A method that uses instance variables in an expression, but does
not assign to them, will not modify the object

• For example, consider the ComputeArea method:

public int ComputeArea()
{

return length * width;
}

It reads the current values of length and width to compute their
product, but the product is returned to the method’s caller. The
instance variables are not changed.

• After executing the following code:

Rectangle rect1 = new Rectangle();
rect1.SetLength(12);
rect1.SetWidth(3);
int area = rect1.ComputeArea();

rect1 has a length of 12 and a width of 3. The call to
rect1.ComputeArea() computes 12 ⋅ 3 = 36, and the area
variable is assigned this return value, but it does not change rect1.

Methods and return values

• Recall the basic structure of a program: receive input, compute
something, produce output

• A method has the same structure: it receives input from its param-
eters, computes by executing the statements in its body, then pro-
duces output by returning a value

– For example, consider this method defined in the Rectangle
class:

public int LengthProduct(int factor)
{

return length * factor;
}

Its input is the parameter factor, which is an int. In the
method body, it computes the product of the rectangle’s

10

length and factor. The method’s output is the resulting
product.

• The return statement specifies the output of the method: a vari-
able, expression, etc. that produces some value

• A method call can be used in other code as if it were a value. The
“value” of a method call is the method’s return value.

– In previous examples, we wrote int area = rect1.ComputeArea();,
which assigns a variable (area) a value (the return value of
ComputeArea())

– The LengthProduct method can be used like this:

Rectangle rect1 = new Rectangle();
rect1.SetLength(12);
int result = rect1.LengthProduct(2) + 1;

When executing the third line of code, the computer first ex-
ecutes the LengthProduct method with argument (input) 2,
which computes the product 12⋅2 = 24. Then it uses the return
value of LengthProduct, which is 24, to evaluate the expres-
sion rect1.LengthProduct(2) + 1, producing a result of 25.
Finally, it assigns the value 25 to the variable result.

• When writing a method that returns a value, the value in the return
statement must be the same type as the method’s return type

– If the value returned by LengthProduct is not an int, we will
get a compile error

– This will not work:

public int LengthProduct(double factor)
{

return length * factor;
}

Now that factor has type double, the expression length * factor
will need to implicitly convert length from int to double in
order to make the types match. Then the product will also be
a double, so the return value does not match the return type
(int).

– We could fix it by either changing the return type of the method
to double, or adding a cast to int to the product so that the
return value is still an int

• Not all methods return a value, but all methods must have a return
type

– The return type void means “nothing is returned”

11

– If your method does not return a value, its return type must be
void. If the return type is not void, the method must return a
value.

– This will cause a compile error because the method has a return
type of int but no return statement:

public int SetLength(int lengthP)
{

length = lengthP;
}

– This will cause a compile error because the method has a return
type of void, but it attempts to return something anyway:

public void GetLength()
{

return length;
}

Introduction to UML
• UML is a specification language for software

– UML: Unified Modeling Language
– Describes design and structure of a program with graphics
– Does not include “implementation details,” such as code state-

ments
– Can be used for any programming language, not just C#
– Used in planning/design phase of software creation, before

you start writing code
– Process: Determine program requirements → Make UML dia-

grams → Write code based on UML → Test and debug pro-
gram

• UML Class Diagram elements

– Top box: Class name, centered
– Middle box: Attributes (i.e. instance variables)

∗ On each line, one attribute, with its name and type
∗ Syntax: [+/-] [name]: [type]
∗ Note this is the opposite order from C# variable declaration:

type comes after name
∗ Minus sign at beginning of line indicates “private member”

– Bottom box: Operations (i.e. methods)
∗ On each line, one method header, including name, pa-

rameters, and return type
∗ Syntax: [+/-] [name]([parameter name]: [parameter type]): [return type]

12

Figure 1: A UML diagram for the ClassName class (text version1)

∗ Also backwards compared to C# order: parameter types
come after parameter names, and return type comes after
method name instead of before it

∗ Plus sign at beginning of line indicates “public”, which is
what we want for methods

• UML Diagram for the Rectangle class

– Note that when the return type of a method is void, we can
omit it in UML

– In general, attributes will be private (- sign) and methods will
be public (+ sign), so you can expect most of your classes to
follow this pattern (-s in the upper box, +s in the lower box)

– Note that there is no code or “implementation” described
here: it does not say that ComputeArea will multiply length by
width

• Writing code based on a UML diagram

– Each diagram is one class, everything within the box is
between the class’s header and its closing brace

– For each attribute in the attributes section, write an instance
variable of the right name and type
∗ See “- width: int”, write private int width;
∗ Remember to reverse the order of name and type

– For each method in the methods section, write a method
header with the matching return type, name, and parameters
∗ Parameter declarations are like the instance variables: in

UML they have a name followed by a type, in C# you write
the type name first

– Now the method bodies need to be filled in - UML just defined

13

Figure 2: A UML diagram for the Rectangle class (text version2)

the interface, now you need to write the implementation

Variable Scope
Instance variables vs. local variables

• Instance variables: Stored (in memory) with the object, shared by
all methods of the object. Changes made within a method persist
after method finishes executing.

• Local variables: Visible to only one method, not shared. Disappear
after method finishes executing. Variables we’ve created before in
the Main method (they are local to the Main method!).

• Example: In class Rectangle, we have these two methods:

public void SwapDimensions()
{

int temp = length;
length = width;
width = temp;

}
public int GetLength()
{

14

return length;
}

– temp is a local variable within SwapDimensions, while length
and width are instance variables

– The GetLength method cannot use temp; it is visible only to
SwapDimensions

– When SwapDimensions changes length, that change is per-
sistent – it will still be different when GetLength executes, and
the next call to GetLength after SwapDimensions will return
the new length

– When SwapDimensions assigns a value to temp, it only has
that value within the current call to SwapDimensions – after
SwapDimensions finishes, temp disappears, and the next call
to SwapDimensions creates a new temp

Definition of scope

• Variables exist only in limited time and space within the program

• Outside those limits, the variable cannot be accessed – e.g. local
variables cannot be accessed outside their method

• Scope of a variable: The region of the program where it is accessi-
ble/visible

– A variable is “in scope” when it is accessible
– A variable is “out of scope” when it does not exist or cannot be

accessed

• Time limits to scope: Scope begins after the variable has been de-
clared

– This is why you cannot use a variable before declaring it

• Space limits to scope: Scope is within the same code block where
the variable is declared

– Code blocks are defined by curly braces: everything between
matching { and } is in the same code block

– Instance variables are declared in the class’s code block (they
are inside class Rectangle’s body, but not inside anything
else), so their scope extends to the entire class

– Code blocks nest: A method’s code block is inside the class’s
code block, so instance variables are also in scope within each
method’s code block

– Local variables are declared inside a method’s code block, so
their scope is limited to that single method

15

• The scope of a parameter (which is a variable) is the method’s code
block - it is the same as a local variable for that method

• Scope example:

public void SwapDimensions()
{

int temp = length;
length = width;
width = temp;

}
public void SetWidth(int widthParam)
{

int temp = width;
width = widthParam;

}

– The two variables named temp have different scopes: One has
a scope limited to the SwapDimensions method’s body, while
the other has a scope limited to the SetWidth method’s body

– This is why they can have the same name: variable names must
be unique within the variable’s scope. You can have two vari-
ables with the same name if they are in different scopes.

– The scope of instance variables length and width is the body
of class Rectangle, so they are in scope for both of these meth-
ods

Variables with overlapping scopes

• This code is legal (compiles) but does not do what you want:

class Rectangle
{

private int length;
private int width;
public void UpdateWidth(int newWidth)
{

int width = 5;
width = newWidth;

}
}

• The instance variable width and the local variable width have dif-
ferent scopes, so they can have the same name

• But the instance variable’s scope (the class Rectangle) overlaps
with the local variable’s scope (the method UpdateWidth)

16

• If two variables have the same name and overlapping scopes, the
variable with the closer or smaller scope shadows the variable with
the farther or wider scope: the name will refer only to the variable
with the smaller scope

• In this case, that means width inside UpdateWidth refers only to the
local variable named width, whose scope is smaller because it is
limited to the UpdateWidth method. The line width = newWidth
actually changes the local variable, not the instance variable
named width.

• Since instance variables have a large scope (the whole class), they
will always get shadowed by variables declared within methods

• You can prevent shadowing by using the keyword this, like this:

class Rectangle
{

private int length;
private int width;
public void UpdateWidth(int newWidth)
{

int width = 5;
this.width = newWidth;

}
}

Since this means “the calling object”, this.width means “ac-
cess the width member of the calling object.” This can only mean
the instance variable width, not the local variable with the same
name

• Incidentally, you can also use this to give your parameters the
same name as the instance variables they are modifying:

class Rectangle
{

private int length;
private int width;
public void SetWidth(int width)
{

this.width = width;
}

}

Without this, the body of the SetWidth method would be
width = width;, which does not do anything (it would assign the
parameter width to itself).

17

Constants
• Classes can also contain constants

• Syntax: [public/private] const [type] [name] = [value];

• This is a named value that never changes during program execu-
tion

• Safe to make it public because it cannot change – no risk of vio-
lating encapsulation

• Can only be built-in types (int, double, etc.), not objects

• Can make your program more readable by giving names to “magic
numbers” that have some significance

• Convention: constants have names in ALL CAPS

• Example:

class Calendar
{

public const int MONTHS = 12;
private int currentMonth;
//...

}

The value “12” has a special meaning here, i.e. the number of
months in a year, so we use a constant to name it.

• Constants are accessed using the name of the class, not the name
of an object – they are the same for every object of that class. For
example:

Calendar myCal = new Calendar();
decimal yearlyPrice = 2000.0m;
decimal monthlyPrice = yearlyPrice / Calendar.MONTHS;

Reference Types: More Details
• Data types in C# are either value types or reference types

– This difference was introduced in an earlier lecture (Datatypes
and Variables)

– For a value type variable (int, long, float, double, decimal,
char, bool) the named memory location stores the exact data
value held by the variable

– For a reference type variable, such as string, the named
memory location stores a reference to the value, not the value
itself

18

– All objects you create from your own classes, like Rectangle,
are reference types

• Object variables are references
– When you have a variable for a reference type, or “reference

variable,” you need to be careful with the assignment opera-
tion

– Consider this code:
using System;

class Program
{

static void Main(string[] args)
{
Rectangle rect1 = new Rectangle();
rect1.SetLength(8);
rect1.SetWidth(10);
Rectangle rect2 = rect1;
rect2.SetLength(4);
Console.WriteLine(

$"Rectangle 1: {rect1.GetLength()} "
+ $"by {rect1.GetWidth()}"

);
Console.WriteLine(

$"Rectangle 2: {rect2.GetLength()} "
+ $"by {rect2.GetWidth()}"

);
}

}
– The output is:
Rectangle 1: 4 by 10
Rectangle 2: 4 by 10

– The variables rect1 and rect2 actually refer to the same
Rectangle object, so rect2.SetLength(4) seems to change
the length of “both” rectangles

– The assignment operator copies the contents of the variable,
but a reference variable contains a reference to an object – so
that’s what gets copied (in Rectangle rect2 = rect1), not
the object itself

– In more detail:
∗ Rectangle rect1 = new Rectangle() creates a new

Rectangle object somewhere in memory, then creates
a reference variable named rect1 somewhere else in
memory. The variable named rect1 is initialized with the
memory address of the Rectangle object, i.e. a reference
to the object

∗ rect1.SetLength(8) reads the address of the Rectangle

19

object from the rect1 variable, finds the object in mem-
ory, and executes the SetLength method on that object
(changing its length to 8)

∗ rect1.SetWidth(10)does the same thing, finds the same
object, and sets its width to 10

∗ Rectangle rect2 = rect1 creates a reference variable
named rect2 in memory, but does not create a new Rect-
angle object. Instead, it initializes rect2 with the same
memory address that is stored in rect1, referring to the
same Rectangle object

∗ rect2.SetLength(4) reads the address of a Rectangle
object from the rect2 variable, finds that object in mem-
ory, and sets its length to 4 – but this is the exact same Rect-
angle object that rect1 refers to

• Reference types can also appear in method parameters
– When you call a method, you provide an argument (a value)

for each parameter in the method’s declaration
– Since the parameter is really a variable, the computer will then

assign the argument to the parameter, just like variable assign-
ment
∗ For example, when you write rect1.SetLength(8), there

is an implicit assignment lengthParameter = 8 that gets
executed before executing the body of the SetLength
method

– This means if the parameter is a reference type (like an object),
the parameter will get a copy of the reference, not a copy of
the object

– When you use the parameter to modify the object, you will
modify the same object that the caller provided as an argu-
ment

– This means objects can change other objects!
– For example, imagine we added this method to the Rectangle

class:
public void CopyToOther(Rectangle otherRect)
{

otherRect.SetLength(length);
otherRect.SetWidth(width);

}
It uses the SetLength and SetWidth methods to modify its
parameter, otherRect. Specifically, it sets the parameter’s
length and width to its own length and width.

– The Main method of a program could do something like this:
Rectangle rect1 = new Rectangle();
Rectangle rect2 = new Rectangle();
rect1.SetLength(8);
rect1.SetWidth(10);

20

rect1.CopyToOther(rect2);
Console.WriteLine($"Rectangle 2:

{rect2.GetLength()} "↪
+ $"by {rect2.GetWidth()}");

∗ First it creates two different Rectangle objects (note the
two calls to new), then it sets the length and width of one
object, using rect1.SetLength and rect1.SetWidth

∗ Then it calls the CopyToOthermethod with an argument of
rect2. This transfers control to the method and (implicitly)
makes the assignment otherRect = rect2

∗ Since otherRect and rect2 are now reference
variables referring to the same object, the calls to
otherRect.SetLength and otherRect.SetWidth within
the method will modify that object

∗ After the call to CopyToOther, the object referred to by
rect2 has a length of 8 and a width of 10, even though
we never called rect2.SetLength or rect2.SetWidth

21

	Introduction
	Class and Object Basics
	Writing Our First Class
	Using Our Class
	Flow of Control with Objects
	Introduction to UML
	Variable Scope
	Constants
	Reference Types: More Details

