
Contents

Interfaces 1
Motivation . 1
Explanations . 5

In Diagram . 5
An Implementation . 5

A More Complicated Example 8

Interfaces

Motivation
Imagine you want to represent a variety of devices, and comes up with
the following UML diagram:

«Abstract»
ComputingDevice

+«property» IPS: double

+Instructions()

Abacus

-ips: double
+«property» IPS: double
+«property» Material: string

+Abacus(ipsP : double, materialP : string)
+Instructions()

«Abstract»
ElectricalDevice

+«property» Voltage: int
+«property» Frequency: int

+SafetyNotice()

USWashingMachine

-voltage: int
-frequency: int
+«property» Voltage: int
+«property» Frequency: int

+USWashingMachine(vP : int, fP: int)
+SafetyNotice()

Figure 1: A UML diagram for the ComputingDevice ⇽ Abacus class (text
version2)

Note that it is possible to gather that e.g., the Instructions() method
in the Abacus class is overriding the Instructions() method in the
ComputingDevice class because it has the same signature: this can be
the case only because it is overriding the inherited abstract method.

Your abstract classes are “completely abstract”, in the sense that all of
their properties and methods are abstract, but it serves your purpose just
well:

1

• you do not want “ComputingDevices” to exist in isolation, but you
want any class representing a computing device such as the Aba-
cus3, the Pascaline4 or the Turing Tumble5 to have an Instruction per
seconds property, and a method to display instructions.

• similarly, you want any “ElectronicalDevice” to have properties per-
taining to their voltage and frequency, as well as a method to dis-
play a safety notice.

A class that is “completely abstract” actually forces you to enforce a
series of constraints and is a good way of making sure that you are con-
sistent e.g., with the naming of your methods, the accessibility of your
properties, or the return type of your methods.

You implement it as follows:

abstract class ComputingDevice
{
public abstract double IPS { get; set; }
public abstract void Instructions();

}

using System;

class Abacus : ComputingDevice
{
private double ips;
public override double IPS
{
get { return ips; }
set
{

if (value < 0 || value > 1000)
throw new ArgumentException(

"This is not plausible"
);

else
ips = value;

}
}
public string Material { get; set; }

public Abacus(double ipsP, string materialP)
{

IPS = ipsP;

3https://en.wikipedia.org/wiki/Abacus
4https://en.wikipedia.org/wiki/Pascal%27s_calculator
5https://en.wikipedia.org/wiki/Turing_Tumble

2

https://en.wikipedia.org/wiki/Abacus
https://en.wikipedia.org/wiki/Pascal%27s_calculator
https://en.wikipedia.org/wiki/Turing_Tumble

Material = materialP;
}

public override void Instructions()
{

Console.WriteLine(
"Refer to https://www.wikihow.com/Use-an-Abacus"

);
}

}

abstract class ElectricalDevice
{
public abstract int Voltage { get; set; }
public abstract int Frequency { get; set; }
public abstract void SafetyNotice();

}

using System;

class USWashingMachine : ElectricalDevice
{
private int voltage;
public override int Voltage
{
get { return voltage; }
set
{

if (value < 110 || value > 220)
{
throw new ArgumentOutOfRangeException();

}
else
{

voltage = value;
}

}
}
private int frequency;
public override int Frequency
{
get { return frequency; }
set
{

if (value != 50 && value != 60)
{
throw new ArgumentOutOfRangeException();

3

}
else

frequency = value;
}

}

public USWashingMachine(int vP, int fP)
{

Voltage = vP;
Frequency = fP;

}

public override void SafetyNotice()
{

Console.WriteLine(
"Refer to https://www.energy.gov/sites/"

+ "prod/files/2016/06/f32/"
+ "NFPA_DryerWasherSafetyTips.pdf"

);
}

}

 using System;

class Program
{
static void Main()
{

Abacus test0 = new Abacus(1.5, "Wood");
test0.Instructions();
USWashingMachine test1 = new USWashingMachine(120,
50);↪
test1.SafetyNotice();

}
}

(Download this code)6

Then, you would like to add a “Computer” class, but face an issue:
classes can inherit only from one class directly, but of course a com-
puter is both an electrical device and a computing device. A solution is
to switch to interfaces.

6https:/princomp.github.io/code/projects/Devices.zip

4

https:/princomp.github.io/code/projects/Devices.zip

Explanations
Interfaces are completely abstract classes: they do not implement any-
thing, they simply force classes inheriting from them (we actually say that
realizes them) to implement certain features.

In Diagram

Interfaces are prefixed by the «Interface» mention, and have all their
properties and methods marked as abstract (so, in italics). A class can
“inherits” from multiple interface (we say that it realizes multiple inter-
faces), and this is marked with an arrow with an open triangle end and
a dashed line7.

«Interface»
ComputingDevice

+«property» IPS: double

+Instructions()

Computer

-ips: double
-voltage: int
-frequency: int

+Computer(ipsP : double, voltageP : int, frequencyP : int)

«Interface»
ElectricalDevice

+«property» Voltage: int
+«property» Frequency: int

+SafetyNotice()

Figure 2: A UML diagram for the ComputingDevice ◁┈ Computer class
(text version9)

An Implementation

Implementing such interfaces and their realization could be done as fol-
lows:

7Note that, this time, since our code below does not override the methods and proper-
ties, there really is no need to repeat them the derived classes.

5

interface ComputingDevice
{

double IPS { get; set; }
void Instructions();

}

interface ElectricalDevice
{

int Voltage { get; set; }
int Frequency { get; set; }
void SafetyNotice();

}

using System;
class Computer: ElectricalDevice, ComputingDevice
{

private double ips;
public double IPS
{

get { return ips; }
set
{

if (value < 0)
throw new ArgumentException(

"This is not possible."
);

else
ips = value;

}

}
private int voltage;
public int Voltage
{

get { return voltage; }
set
{

if (value < 110 || value > 220)
{

throw new ArgumentOutOfRangeException();
}
else
{

voltage = value;
}

}
}

6

private int frequency;
public int Frequency
{

get { return frequency; }
set
{

if (value != 50 && value != 60)
{

throw new ArgumentOutOfRangeException();
}
else

frequency = value;
}

}
public Computer(double ipsP, int voltageP, int

frequencyP)↪
{

IPS = ipsP;
Voltage = voltageP;
Frequency = frequencyP;

}
public void Instructions()
{

Console.WriteLine(
"Refer to your operating system manual."

);
}
public void SafetyNotice()
{

Console.WriteLine("Refer to your manufacturer
website.");↪
}

}

 using System;

class Program
{

static void Main()
{

Computer test0 = new Computer(100000, 120, 50);
test0.SafetyNotice();
test0.Instructions();

}
}

7

(Download this code)10

Note that

• in the ComputingDevice and ElectricalDevice,
– abstract class has been replaced by interface,
– there is no need for the abstract keyword (all is abstract al-

ready!),
– there is no need for the public keyword (everything has to be

public),
• in the Computer realization,

– the class realizes two interfaces, simply separated by a
comma:
Computer: ElectricalDevice, ComputingDevice

– there is no need for the override keyword,

A More Complicated Example

in this archive13

10https:/princomp.github.io/code/projects/DevicesInterfaces.zip
13https:/princomp.github.io/code/projects/Shape.zip

8

https:/princomp.github.io/code/projects/DevicesInterfaces.zip
https:/princomp.github.io/code/projects/Shape.zip

IAnimation

«Interface»

+Talk()
+FlipRight()

Shape

«Abstract»
-color: string
-bool: filled

+GetColor() : string
+GetFilled() : bool
+Shape(color: string, filled: bool)
+ToString() : string
+Area() : double
+Talk()
+FlipRight()
+CompareTo(shapeP : shape) : int

IComparable

«Interface»

+CompareTo(arg : Shape) : int

Rectangle

-width: int
-length: int
+«property» Width: int
+«property» Length: int

+Talk()
+Draw()
+FlipRight()
+Area() : double
+Rectangle(wP : int, lP : int, cP : string, fP : bool)
+ToString() : string

Cube

-height:int
+«property» Height: int

+Cube(hP : int, wP : int, cP: bool, fP:bool)
+Talk()

Figure 3: A UML diagram for the IAnimation ◁┈ Shape class (text ver-
sion12) 9

	Interfaces
	Motivation
	Explanations
	In Diagram
	An Implementation

	A More Complicated Example

