
Contents

Inheritance 1
Motivation . 1
Vehicle Example . 1

Inheritance

Motivation
• One of the benefit of Object-Oriented Programming is to re-use the

same class to handle multiple instantiations. This saves the program-
mer having to repeat or copy the same code again and again.

• But classes can themselves re-use code from other classes: this sim-
ilarly saves the programmer from having to copy the same code
again and again.

• Consider for example that a programmer has to write a class for
cars, a class for bikes, and a class for planes.

– All classes will share some attributes: they will all need, for ex-
ample, an attribute for their number of wheels, one for their
passenger capacity, one for their average speed, one for their
average price per mile, and so on.

– All classes may also share some method: typically, how the
number of wheels can be accessed, or how to convert their
price per mile to a price per kilometer.

– However, some attributes will be proper to some classes: fork
length makes sense only for bikes1, maximum altitude only
makes sense for planes, trunk size only make sense for cars,
etc.

– This is an example of inheritance: the programmer will imple-
ment one class for vehicle containing all the shared attributes
and methods, and will have the class for e.g., bikes, inherits
from the vehicle class.

• The most general class is called the base class (or superclass). The
most particular class is called the derived class (or subclass).

Vehicle Example
Consider the following class:

with the following implementation:

public class Vehicle
{

1We use “bike” to refer to both bicycles and motorcycles.

1

Vehicle

+«property» Color: string
-numberOfWheels: int

+Vehicle()
+Vehicle(cP : string, nowP : int)
+SetNOW(nowP : int)
+ToString() : string

Figure 1: A UML diagram for the Vehicle class (text version2)

public string Color { get; set; }
private int numberOfWheels;

public void SetNOW(int nowP)
{
if (nowP > 0)

numberOfWheels = nowP;
else

numberOfWheels = -1;
}

public Vehicle()
{

Color = "undefined";
numberOfWheels = -1;

}

public Vehicle(string cP, int nowP)
{

Color = cP;
numberOfWheels = nowP;

}

public override string ToString()
{
return $"Number of wheels: {numberOfWheels}"

+ $"\nColor: {Color}";
}

}

2

and say that we want to extend it to accommodate bikes. Bikes have, in
addition to a color and a number of wheels, a fork length. Note that no
other vehicle have a fork length, so it does not make sense to add this
attribute to the Vehicle class.

A possible implementation is as follows:

public class Bike : Vehicle
{
public double ForkLength;

public Bike()
{

ForkLength = -1;
SetNOW(2); // or base.setNOW(2);

}

public Bike(string cP, double flP)
: base(cP, 2)

{
ForkLength = flP;

}

public override string ToString()
{
return base.ToString() + $"\nFork Length:

{ForkLength}";↪
}

}

Note:

• The : Vehicle on the first line, that make Bike a derived class from
Vehicle. Any Bikeobject will have all the attributes and properties
of the Vehicle class, in addition to its methods. For example, we
can have:

Bike test2 = new Bike();
test2.Color = "Green";

and the Vehicle Color accessor will be used, since Bike does not
have an accessor for Color.

• Implicitly, the Bike() constructor starts by calling the Vehicle()
constructor, so that Color and numberOfWheels are actually set to
"undefined" and -1, respectively.

• That SetNOW into the Bike() constructor actually refers to the
SetNOW method in the Vehicle class. A way of being more explicit
would have been to write base.SetNOW instead of SetNOW. In

3

either case, the value -1M is overriden by 2 (since every bike has 2
wheels).

• The : base(cP, 2) instructs to call the

Vehicle(string cP, int nowP)

constructor, passing it the values cP and 2 (once again since every
bike has 2 wheels).

• The override keyword “discards” the Vehicle ToString method
to replace it with a custom ToString method for the Bike class.
Note that we can still access what the Vehicle method returns us-
ing base.ToString(). Note that, in this particular, we have no
choice but to call this base ToString method, since we have no
way of accessing numberOfWheels from the Bike class: this at-
tribute is private to the Vehicle class, and has no getter.

The inheritance is represent in UML as follows:

Vehicle

+«property» Color: string
-numberOfWheels: int

+Vehicle()
+Vehicle(cP : string, nowP : int)
+SetNOW(nowP : int)
+ToString() : string

Bike

-ForkLength: double

+Bike()
+Bike(cP : string, flP: double)
+ToString() : string

Figure 2: A UML diagram for the Vehicle⇽ Bike class (text version3)

Observe that the ToString is indicated in the Bike class: this is an indi-

4

cation that the Vehicle’s ToString method is actually overriden in the
Bike derived class.

Note that inheritance can be “chained”, as Bike could itself be the base
class for a Bicycle class that could have e.g. a saddleType attribute
(noting that a motorbike does not have a saddle, but a seat). We could
then obtain a code as follows:

 public class Bicycle : Bike
{
private string saddleType;

public Bicycle()
{

saddleType = "undefined";
}

public Bicycle(string cP, double flP, string sT)
: base(cP, flP)

{
saddleType = sT;

}

public override string ToString()
{
return base.ToString() + $"\nSaddle Type:

{saddleType}";↪
}

}

5

	Inheritance
	Motivation
	Vehicle Example

