Contents

Generic Type Parameter 1
Infroductiono 1
GenericTypes o e 1
Implicitly Typed Local Variables 2

Generic Type Parameter

Introduction

Imagine that you want to write a method that takes as an argument an
array and returns an array of the same type, but with the values reversed.
You may write the following code:

public class Helper{
public static int[] Reverse(int[] arrayP)

{
int[] result = new int[arrayP.Length];
int j = 0;
for (int 1 = arrayP.Length - 1; 1 >= 0; i1--)
{
result[j] = arrayP[1];
j++s
I
return result;
}

}

Then, this method could be used as follows:

int[] arrayl = {0, 2, 3, 6};
int[] arraylreversed = Helper.Reverse(arrayl);

And then arraylreversed would contain 6, 3, 2, 0.

This method works as infended, but you can use it only with arrays of
infegers. If you want to use a similar method with arrays of, say, char,
then you need to copy-and-paste the code above and to replace every
occurrence of int by char. This is not very efficient, and it is error-prone.

Generic Types

There is a tool in C# to avoid having to be foo specific, and to be able
to tell the compiler that the method will work “with some type”, called

generic type porome’reﬂ, using the keyword T. In essence, <T> is affixed
after the name of the method to signal that the method will additionally
require to instantiate T with a particular type.

The previous method would become:

public class Helper{
public static T[] Reverse<T>(T[] arrayP)

{
T[] result = new T[arrayP.Length];
int j = 0;
for (int 1 = arrayP.Length - 1; 1 >= 0; i1--)
{
result[j] = arrayP[i];
j++s
I
return result;
}

}

where three occurrences of int[] were replaced by T[], and <T> was
additionally added between the name of the method and its parame-
ters. This method is used as follows:

int[] arrayl = {0, 2, 3, 6};
int[] arraylreversed = Helper.Reverse<int>(arrayl);

char[] array2 = {'a', 'b', 'c'};

char[] array2reversed = Helper.Reverse<char>(array2);

In essence, Reverse<int> tells C# that Reverse will be used with T be-
ing int (not int[], as the method uses T[] for its argument and re-
turn type). Note that to use the same method with char, we simply use
Reverse<char=>, and then we provide an array of char as parameters,
and obtain an array of char in return.

Implicitly Typed Local Variables

Sometimes, the body of the method needs to declare variable with the
same type as T. Indeed, imagine, for example, that we want to add to
our He'lper class a method that returns a string description of an array.
We can write the following:

public static string Description(int[] arrayP)

{

string returned = "";

! https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/gen
eric-type-parameters

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters

foreach (int element in arrayP)

{
}

return returned;

returned += element + ;

}

but this method is specific to arrays of int, and we would have to write
another one for char, for example. Making the header generic is “easy”,
as we can use, as before:

public static string Description<T>(T[] arrayP)

but the body is problematic: what should be the type of the element
variable in the header of the foreach? We cannot simply use T, but we
can use implicitly typed variable. This tfechnique, that uses the keyword
var essentially fells C# to ... figure out the type of the variable. In that
case, since C# knows the type of the array you are passing, it can easily
infer the type of its elements.

We can then rewrite the previous method as follows:

public static string Description<T>(T[] arrayP)

{
string returned = "";
foreach (var element in arrayP)
{
returned += element + " ";
}
return returned;
}

and use it with
Console.WriteLine(Helper.Display<char>(array2);

for example.

	Generic Type Parameter
	Introduction
	Generic Types
	Implicitly Typed Local Variables

