
Contents

Constructors and Methods 1
Default Values and the ClassRoom Class 1
Constructors . 4
Writing ToString Methods . 8
Method Signatures and Overloading 10
Constructors in UML . 14

Constructors and Methods

Default Values and the ClassRoom Class
• In lab, you were asked to execute a program like this:

using System;

class Program
{

static void Main(string[] args)
{
Rectangle myRect = new Rectangle();
Console.WriteLine($"Length is
{myRect.GetLength()}");↪
Console.WriteLine($"Width is
{myRect.GetWidth()}");↪

}
}

Note that we create a Rectangle object, but do not use the
SetLength or SetWidth methods to assign values to its instance
variables. It displays the following output:

Length is 0
Width is 0

• This works because the instance variables length and width have
a default value of 0, even if you never assign them a value

• Local variables, like the ones we write in the Main method, do not
have default values. You must assign them a value before using
them in an expression.

– For example, this code will produce a compile error:

int myVar1;
int myVar2 = myVar1 + 5;

1

You cannot assume myVar1 will be 0; it has no value at all until
you use an assignment statement.

• When you create (instantiate) a new object, its instance variables
will be assigned specific default values based on their type:

Type Default Value

Numeric types 0
string null
objects null
bool false
char '\0'

• Remember, null is the value of a reference-type variable that
refers to “nothing” - it does not contain the location of any object at
all. You cannot do anything with a reference variable containing
null.

A class we will use for subsequent examples

• ClassRoom: Represents a room in a building on campus

• UML Diagram:

ClassRoom

-building: string
-number: int

+SetBuilding(buildingParam : string)
+GetBuilding() : string
+SetNumber(numberParameter: int)
+GetNumber() : int

Figure 1: A UML diagram for the ClassRoom class (text version1)

– There are two attributes: the name of the building (a string)
and the room number (an int)

– Each attribute will have a “getter” and “setter” method

• Implementation:

2

class ClassRoom
{

private string building;
private int number;

public void SetBuilding(string buildingParam)
{
building = buildingParam;

}

public string GetBuilding()
{
return building;

}

public void SetNumber(int numberParam)
{
number = numberParam;

}

public int GetNumber()
{
return number;

}
}

– Each attribute is implemented by an instance variable with the
same name

– To write the “setter” for the building attribute, we write a
method whose return type is void, with a single string-type
parameter. Its body assigns the building instance variable
to the value in the parameter buildingParam

– To write the “getter” for the building attribute, we write a
method whose return type is string, and whose body returns
the instance variable building

• Creating an object and using its default values:

using System;

class Program
{

static void Main(string[] args)
{
ClassRoom english = new ClassRoom();
Console.WriteLine(
$"Building is {english.GetBuilding()}"

3

);
Console.WriteLine(
$"Room number is {english.GetNumber()}"

);
}

}

This will print the following output:

Building is
Room number is 0

Remember that the default value of a string variable is null.
When you use string interpolation on null, you get an empty string.

Constructors
• Instantiation syntax requires you to write parentheses after the

name of the class, like this:

ClassRoom english = new ClassRoom();

• Parentheses indicate a method call, like in Console.ReadLine()
or english.GetBuilding()

• In fact, the instantiation statement new ClassRoom() does call a
method: the constructor

• Constructor: A special method used to create an object. It “sets
up” a new instance by initializing its instance variables.

• If you do not write a constructor in your class, C# will generate a
“default” constructor for you – this is what’s getting called when we
write new ClassRoom() here

• The default constructor initializes each instance variable to its de-
fault value – that’s where default values come from

Writing a constructor

• Example for ClassRoom:

public ClassRoom(string buildingParam, int
numberParam)↪

{
building = buildingParam;
number = numberParam;

}

• To write a constructor, write a method whose name is exactly the
same as the class name

4

• This method has no return type, not even void. It does not have a
return statement either

• For ClassRoom, this means the constructor’s header starts with
public ClassRoom

– You can think of this method as “combining” the return type
and name. The name of the method is ClassRoom, and
its output is of type ClassRoom, since the return value of
new ClassRoom() is always a ClassRoom object

– You do not actually write a return statement, though, be-
cause new will always return the new object after calling the
constructor

• A custom constructor usually has parameters that correspond to
the instance variables: for ClassRoom, it has a string param-
eter named buildingParam, and an int parameter named
numberParam

– Note that when we write a method with two parameters, we
separate the parameters with a comma

• The body of a constructor must assign values to all instance vari-
ables in the object

• Usually this means assigning each parameter to its corresponding
instance variable: initialize the instance variable to equal the pa-
rameter

– Very similar to calling both “setters” at once

• Using a constructor

• An instantiation statement will call a constructor for the class being
instantiated

• Arguments in parentheses must match the parameters of the con-
structor

• Example with the ClassRoom constructor:

using System;

class Program
{

static void Main(string[] args)
{
ClassRoom csci = new ClassRoom("Allgood East",
356);↪
Console.WriteLine($"Building is
{csci.GetBuilding()}");↪

5

Console.WriteLine($"Room number is
{csci.GetNumber()}");↪

}
}

This program will produce this output:

Building is Allgood East
Room number is 356

• The instantiation statement new ClassRoom("Allgood East", 356)
first creates a new “empty” object of type ClassRoom, then calls
the constructor to initialize it. The first argument, “Allgood East”,
becomes the constructor’s first parameter (buildingParam), and
the second argument, 356, becomes the constructor’s second
parameter (numberParam).

• After executing the instantiation statement, the object referred to
by csci has its instance variables set to these values, even though
we never called SetBuilding or SetNumber

Methods with multiple parameters

• The constructor we wrote is an example of a method with two pa-
rameters

• The same syntax can be used for ordinary, non-constructor meth-
ods, if we need more than one input value

• For example, we could write this method in the Rectangle class:

public void MultiplyBoth(int lengthFactor, int
widthFactor)↪

{
length *= lengthFactor;
width *= widthFactor;

}

• The first parameter has type int and is named lengthFactor. The
second parameter has type int and is named widthFactor

• You can call this method by providing two arguments, separated
by a comma:

Rectangle myRect = new Rectangle();
myRect.SetLength(5);
myRect.SetWidth(10);
myRect.MultiplyBoth(3, 5);

The first argument, 3, will be assigned to the first parameter,
lengthFactor. The second argument, 5, will be assigned to the

6

second parameter, widthFactor

• The order of the arguments matters when calling a multi-parameter
method. If you write myRect.MultiplyBoth(5, 3), then
lengthFactor will be 5 and widthFactor will be 3.

• The type of each argument must match the type of the correspond-
ing parameter. For example, when you call the ClassRoom con-
structor we just wrote, the first argument must be a string and the
second argument must be an int

Writing multiple constructors

• Remember that if you do not write a constructor, C# gener-
ates a “default” one with no parameters, so you can write
new ClassRoom()

• Once you add a constructor to your class, C# will not generate a
default constructor

– This means once we write the ClassRoom constructor (as
shown earlier), this statement will produce a compile error:
ClassRoom english = new ClassRoom();

– The constructor we wrote has 2 parameters, so now you always
need 2 arguments to instantiate a ClassRoom

• If you still want the option to create an object with no arguments
(i.e. new ClassRoom()), you must write a constructor with no pa-
rameters

• A class can have more than one constructor, so it would look like
this:

class ClassRoom
{

//...
public ClassRoom(string buildingParam, int

numberParam)↪
{

building = buildingParam;
number = numberParam;

}
public ClassRoom()
{

building = null;
number = 0;

}
//...

}

7

• The “no-argument” constructor must still initialize all the instance
variables, even though it has no parameters

– You can pick any “default value” you want, or use the same
ones that C# would use (0 for numeric variables, null for ob-
ject variables, etc.)

• When a class has multiple constructors, the instantiation statement
must decide which constructor to call

• The instantiation statement will call the constructor whose parame-
ters match the arguments you provide

– For example, each of these statements will call a different con-
structor:

ClassRoom csci = new ClassRoom("Allgood East",
356);↪

ClassRoom english = new ClassRoom();

The first statement calls the two-parameter constructor we
wrote, since it has a string argument and an int argu-
ment (in that order), and those match the parameters
(string buildingParam, int numberParam). The second
statement calls the zero-parameter constructor since it has no
arguments.

– If the arguments do not match any constructor, it is still an error:

ClassRoom csci = new ClassRoom(356, "Allgood
East");↪

This will produce a compile error, because the instantiation
statement has two arguments in the order int, string, but
the only constructor with two parameters needs the first
parameter to be a string.

Writing ToString Methods
• ToString recap

– String interpolation automatically calls the ToString method
on each variable or value

– ToString returns a string “equivalent” to the object; for exam-
ple, if num is an int variable containing 42, num.ToString()
returns “42”.

– C# datatypes already have a ToString method, but you
need to write a ToString method for your own classes to use
them in string interpolation

• Writing a ToString method

8

– To add a ToString method to your class, you must write this
header: public override string ToString()

– The access modifier must be public (so other code, like string
interpolation, can call it)

– The return type must be string (ToString must output a string)
– It must have no parameters (the string interpolation code will

not know what arguments to supply)
– The keyword override means your class is “overriding,” or pro-

viding its own version of, a method that is already defined else-
where – ToString is defined by the base object type, which
is why string interpolation “knows” it can call ToString on any
object
∗ If you do not use the keyword override, then the pre-

existing ToString method (defined by the base object
type) will be used instead, which only returns the name of
the class

– The goal of ToString is to return a “string representation” of
the object, so the body of the method should use all of the
object’s attributes and combine them into a string somehow

– Example ToString method for ClassRoom:
public override string ToString()
{

return building + " " + number;
}
∗ There are two instance variables, building and number,

and we use both of them
∗ A natural way to write the name of a classroom is the build-

ing name followed by the room number, like “University Hall
124”, so we concatenate the variables in that order

∗ Note that we add a space between the variables
∗ Note that building is already a string, but number

is an int, so string concatenation will implicitly call
number.ToString() – ToString methods can call other
ToString methods

∗ Another way to write the body would be return $"{building} {number}";
• Using a ToString method

– Any time an object is used in string interpolation or concatena-
tion, its ToString method will be called

– You can also call ToString by name using the “dot operator,”
like any other method

– This code will call the ToString method we just wrote for
ClassRoom:
ClassRoom csci = new ClassRoom("Allgood East",

356);↪
Console.WriteLine(csci);
Console.WriteLine($"The classroom is {csci}");

9

Console.WriteLine("The classroom is " +
csci.ToString());↪

Method Signatures and Overloading
Name uniqueness in C#

• In general, variables, methods, and classes must have unique
names, but there are several exceptions

• Variables can have the same name if they are in different scopes
– Two methods can each have a local variable with the same

name
– A local variable (scope limited to the method) can have the

same name as an instance variable (scope includes the whole
class), but this will result in shadowing

• Classes can have the same name if they are in different names-
paces

– This is one reason C# has namespaces: you can name your
classes anything you want. Otherwise, if a library (someone
else’s code) used a class name, you would be prevented from
using that name

– For example, imagine you were using a “shapes library” that
provided a class named Rectangle, but you also wanted to
write your own class named Rectangle

– The library’s code would use its own namespace, like this:
namespace ShapesLibrary
{

class Rectangle
{

//instance variables, methods, etc.
}

}
Then your own code could have a Rectangleclass in your own
namespace:
namespace MyProject
{

class Rectangle
{

//instance variables, methods, etc.
}

}
– You can use both Rectangle classes in the same code, as long

as you specify the namespace, like this:
MyProject.Rectangle rect1 = new

MyProject.Rectangle();↪

10

ShapesLibrary.Rectangle rect2 = new
ShapesLibrary.Rectangle();↪

• Methods can have the same name if they have different signatures;
this is called overloading

– We’ll explain signatures in more detail in a minute
– Briefly, methods can have the same name if they have different

parameters
– For example, you can have two methods named Multiply in

the Rectangle class, as long as one has one parameter and
the other has two parameters:
public void Multiply(int factor)
{

length *= factor;
width *= factor;

}
public void Multiply(int lengthFactor, int

widthFactor)↪
{

length *= lengthFactor;
width *= widthFactor;

}
C# understands that these are different methods, even though
they have the same name, because their parameters are dif-
ferent. If you write myRect.Multiply(2) it can only mean the
first “Multiply” method, not the second one, because there is
only one argument.

– We have used overloading already when we wrote multiple
constructors – constructors are methods too. For example,
these two constructors have the same name, but different
parameters:
public ClassRoom(string buildingParam, int

numberParam)↪
{

building = buildingParam;
number = numberParam;

}
public ClassRoom()
{

building = null;
number = 0;

}

Method signatures

• A method’s signature has 3 components: its name, the type of
each parameter, and the order the parameters appear in

11

• Methods are unique if their signatures are unique, which is why they
can have the same name

• Signature examples:
– public void Multiply(int lengthFactor, int widthFactor)

– the signature is Multiply(int, int) (name is Multiply,
parameters are int and int type)

– public void Multiply(int factor) – signature is
Multiply(int)

– public void Multiply(double factor) – signature is
Multiply(double)

– These could all be in the same class since they all have different
signatures

• Parameter names are not part of the signature, just their types
– Note that the parameter names are omitted when I write down

the signature
– That means these two methods are not unique and could not

be in the same class:
public void SetWidth(int widthInMeters)
{

//...
}
public void SetWidth(int widthInFeet)
{

//...
}
Both have the same signature, SetWidth(int), even though
the parameters have different names. You might intend the
parameters to be different (i.e. represent feet vs. meters), but
any int-type parameter is the same to C#

• The method’s return type is not part of the signature
– So far all the examples have the same return type (void), but

changing it would not change the signature
– The signature of public int Multiply(int factor) is
Multiply(int), which is the same as public void Multiply(int factor)

– The signature “begins” with the name of the method; every-
thing “before” that does not count (i.e. public, int)

• The order of parameters is part of the signature, as long as the types
are different

– Since parameter name is not part of the signature, only the
type can determine the order

– These two methods have different signatures:
public int Update(int number, string name)
{

//...
}
public int Update(string name, int number)

12

{
//..

}
The signature of the first method is Update(int, string). The
signature of the second method is Update(string, int).

– These two methods have the same signature, and could not
be in the same class:
public void Multiply(int lengthFactor, int

widthFactor)↪
{

//...
}
public void Multiply(int widthFactor, int

lengthFactor)↪
{

//...
}
The signature for both methods is Multiply(int, int), even
though we switched the order of the parameters – the name
does not count, and they are both int type

• Constructors have signatures too
– The constructor ClassRoom(string buildingParam, int numberParam)

has the signature ClassRoom(string, int)
– The constructor ClassRoom() has the signature ClassRoom()
– Constructors all have the same name, but they are unique if

their signatures (parameters) are different

Calling overloaded methods

• Previously, when you used the dot operator and wrote the name
of a method, the name was enough to determine which method
to execute – myRect.GetLength() would call the GetLength
method

• When a method is overloaded, you must use the entire signature to
determine which method gets executed

• A method call has a “signature” too: the name of the method, and
the type and order of the arguments

• C# will execute the method whose signature matches the signature
of the method call

• Example: myRect.Multiply(4); has the signature Multiply(int),
so C# will look for a method in the Rectangle class that
has the signature Multiply(int). This matches the method
public void Multiply(int factor)

• Example: myRect.Multiply(3, 5); has the signature Multiply(int, int),
so C# will look for a method with that signature in the Rectangle
class. This matches the method public void Multiply(int lengthFactor, int widthFactor)

13

• The same process happens when you instantiate a class with multi-
ple constructors: C# calls the constructor whose signature matches
the signature of the instantiation

• If no method or constructor matches the signature of the
method call, you get a compile error. You still cannot write
myRect.Multiply(1.5) if there is no method whose signature is
Multiply(double).

Constructors in UML
• Now that we can write constructors, they should be part of the UML

diagram of a class

– No need to include the default constructor, or one you write
yourself that takes no arguments

– Non-default constructors go in the operations section (box 3)
of the UML diagram

– Similar syntax to a method: [+/-] <<constructor>> [name]([parameter name]: [parameter type])
(where <> is sometimes replaced with «constructor»)

– Note that the name will always match the class name
– No return type, ever
– Annotation “«constructor»” is nice, but not necessary: if the

method name matches the class name, it is a constructor

• Example for ClassRoom:

ClassRoom

-building: string
-number: int

+«constructor» ClassRoom(buildingParam: string, numberParam: int)
+SetBuilding(buildingParam : string)
+GetBuilding() : string
+SetNumber(numberParameter: int)
+GetNumber() : int

Figure 2: A UML diagram for the ClassRoom class (text version2)

14

	Constructors and Methods
	Default Values and the ClassRoom Class
	Constructors
	Writing ToString Methods
	Method Signatures and Overloading
	Constructors in UML

