
Contents

Abstract Classes 1
Motivation . 1
Example . 1
Additional Details: Abstract Properties and Methods 3
UML Class Diagram Representation 4

Abstract Classes

Motivation
Consider the following situation:

• We want to implement a class for students, and one for employees.
• We realize that those class overlap heavily: they both need proper-

ties for an id, a name, an emergency phone number, an address,
etc., identical methods to e.g., implement an automated alert sys-
tem, etc.

• However, they do not overlap perfectly: for example, students will
have a major but employees won’t, and employee will have an
hourly wage but students won’t. Also, some checks will be different:
while both students and employees will have an id, the former will
always start with the letter ‘S’, and the latter with the letter ‘E’.

• So we really do need two different classes, but would like for them
both to inherit a “Person” class that implements all the overlapping
properties, attributes and methods.

• But we do not want persons “objects” to be created: a “person” in
isolation does not make sense in our model, we only want to imple-
ment students or employees, not “persons”.

The mechanism used to obtain this behavior (being able to inherit from
a class while disallowing instantiating it) is achieved using the abstract
keyword.

Example
Consider a (shortened) version of the example above. We start by im-
plementing an abstract Person class:

abstract class Person
{
public string Name { get; set; }
public abstract string Id { set; }

}

1

Note that the Id property is also marked as abstract: this means that
the derived class will have to re-implement this property’s setter. Then,
we can implement the Student and Employee classes by inheriting from
the Person class:

using System;

class Student : Person
{
private string major;
public override string Id
{

set
{

if (value[0] != 'S')
throw new ArgumentException(

"A student ID must start with an 'S'."
);

}
}

}

using System;

class Employee : Person
{
private decimal hourlyPay;
public override string Id
{

set
{

if (value[0] != 'E')
throw new ArgumentException(

"An employee ID must start with an 'E'."
);

}
}

}

Using this code, the statement

Person test = new Person();

would return the error message “Cannot create an instance of the ab-
stract type or interface ‘Person’ ”.

Furthermore, the following exemplifies the expected behavior:

 using System;

2

class Program
{
static void Main()
{
// Person test = new Person(); // Cannot create an

instance of the abstract type or interface
'Person'

↪
↪
Employee Harley = new Employee();
Harley.Id = "E8190";

Student Morgan = new Student();
try
{

Morgan.Id = "E8194";
}
catch
{

Console.WriteLine(
"We cannot set the Id of a student to a string not

starting with 'S'!"↪
);

}
Morgan.Id = "S8194";

}
}

The statement Morgan.Id = "E8194"; will raise exception, but
Morgan.Id = "S8194"; will execute without throwing an error.

Additional Details: Abstract Properties and Methods
• As we’ve seen above with the Id property, not only classes can be

marked as abstract.

• For abstract properties, using {get; set;}, only {get;} or only
{set;} indicates if the derived class needs to implement both a
setter and a getter, or only one of them.

• In addition to properties, methods can also be marked as abstract:
in that case, their body need to be absent (not simply empty: miss-
ing).

– For example, the Person class could also contain

public abstract string GenerateLogin();

to “force” any derived class to implement a GenerateLogin

3

method that does not take any parameter and returns a
string. The derived classes would need to implement a
method that overrides the Person’s GenerateLogin method:

public override string GenerateLogin(){
// Insert method body.

}

• However, abstract attributes are not allowed.

UML Class Diagram Representation
• An abstract class is represented by as a class with its name prefixed

by <<Abstract>>, «Abstract», or with its name displayed in italics,
• An abstract method or property is represented as a usual, except

that it is displayed in italics.
• Since, for example, Person’s GenerateLogin() method is to be

overridden (it has to be, actually, since it is abstract), it is indicated
again in the Student and Employee classes: this indicates that
those method override the one they have inherited from the
Person class.

«Abstract»
Person

+«property» Name: string
+«property» Id: string

+GenerateLogin() : string

Student

-major: string
+«property» Id: string

+GenerateLogin() : string

Employee

-hourlyPay: decimal
+«property» Id: string

+GenerateLogin() : string

Figure 1: A UML diagram for the Person⇽ Student class (text version1)

4

	Abstract Classes
	Motivation
	Example
	Additional Details: Abstract Properties and Methods
	UML Class Diagram Representation

