2025-11-06
Sorting Algorithms
Motivation
Wikipedia explains it very nicely: sorting is ubiquitous in Computer Sciences. It is a simple problem (“How can I sort the following values the most efficiently?”) that has many solutions, but still offers open problems.
We only consider correct algorithms, i.e., one where their output is such that
· each element is larger than or equal to the previous one, according to the order picked,
· all the elements that were in the input are present in the output (with the same cardinality, if repetition is allowed).
There are many ways of “comparing” sorting algorithms. A sorting algorithm…
· has a best, worst and average case time complexity (measured in general in number of comparisons required),
· has a best, worst and average case space complexity (i.e., “how much additional memory is required?”),
· can be “stable” (i.e., equal values are not permutted),
· uses insertion, exchange, selection, merging method,
· is serial or parallel,
among other properties.
Insertion Sort Algorithm
This algorithm is nicely explained and illustrated on wikipedia, and can be implemented as follows:
 public static void InsertionSort(List<T> listP)
 {
 int swapOperations = 0;
 // Can be ignored, is simply here
 // to count number of time we
 // swap values.
 Console.WriteLine("----------- Insertion Sort -------");
 Displaying<T>.DisplayHeader(listP, 0, listP.Count);

 T current;
 int slot;
 for (int bar = 1; bar < listP.Count; bar++)
 {
 current = listP[bar];
 for (slot = bar; slot > 0 && current.CompareTo(listP[slot - 1]) < 0; slot--)
 {
 swapOperations++;
 listP[slot] = listP[slot - 1];
 }
 listP[slot] = current;
 }

 Displaying<T>.Display(listP);
 Console.WriteLine("Count = {0}", swapOperations);
 }
Heapsort Algorithm
We first define some helper methods:
 private static void Swap(List<T> listP, int lhs, int rhs)
 {
 T temp = listP[lhs];
 listP[lhs] = listP[rhs];
 listP[rhs] = temp;
 }

 private static int LeftChild(int i)
 {
 return 2 * i + 1;
 }
and then leverage the heap structure to sort:
 public static void Heapsort(List<T> listP)
 {
 Console.WriteLine(" --- Starting HeapSort ----");
 Heapsort(listP, listP.Count);
 }

 private static void Heapsort(List<T> listP, int N)
 {
 Displaying<T>.DisplayHeader(listP, 0, listP.Count);
 Displaying<T>.Display(listP);

 for (int i = N / 2; i >= 0; i--) /* BuildHeap */
 PercDown(listP, i, N);
 Console.WriteLine("-- Max Heap is built --");
 Displaying<T>.Display(listP);
 for (int i = N - 1; i > 0; i--)
 {
 Swap(listP, 0, i); /* DeleteMax */
 PercDown(listP, 0, i);
 Displaying<T>.Display(listP);
 }
 }

 private static void PercDown(List<T> listP, int i, int N)
 {
 int Child;
 T current;

 for (current = listP[i]; LeftChild(i) < N; i = Child)
 {
 Child = LeftChild(i);
 if (Child != N - 1 && listP[Child].CompareTo(listP[Child + 1]) < 0)
 Child++;
 if (current.CompareTo(listP[Child]) < 0) // current < listP[child]
 listP[i] = listP[Child];
 else
 // if current >= listP[child] we *do not*
 // swap: we are constructing a *max* heap!
 break;
 }
 listP[i] = current;
 }
Note that PercDown builds a max heap: once the values are “pre-sorted greater value first”, removing the first one to move it to the end of the list makes the list sorted from smallest to greatest value once we are done.
