
Contents

Reference Types 1
Motivation . 1
null Value . 2
null-Conditional Operator . 2

null-Coalescing Operator 2
null-Coalescing Assignment Operator 3

Nullable value types . 3
Testing for Equality . 3

Motivation . 3
Comparing Arrays . 4

Passing Arguments . 5
Motivation . 5
ref Keyword . 6
out Keyword . 7

Reference Types

Motivation
There is a fundamental difference between value types and reference
types in C#. For example, compare:

int x = 10;
int y = x;
y = 11;
Console.WriteLine($"x is {x}, y is {y}.");
// Displays "x is 10, y is 11.".

and

int[] a = { 10 };
int[] b = a;
b[0] = 11;
Console.WriteLine($"a[0] is {a[0]}, b[0] is {b[0]}.");
// Displays "a[0] is 11, b[0] is 11.".

In the first case (with ints), the value of xwill remain 11, but in the second
(with arrays of ints), a[0] will now contain 11 as well. That is because
when y = x was executed, the value of x was copied, but when b = a
is executed, the reference to the array was copied.

All the built-in types are value types: numerical types, char and bool
contains values. On the other hand, objects, string and arrays, for ex-
ample, are reference types.

1

null Value
Reference types can contain a special value, called null, that intuitively
means that it references nothing. It can be used as follows:

int[] c = null;

Any reference type must be handled with great care, since for example

Console.WriteLine(c.Length);

would compile but would throw a NullReferenceException exception
(a null reference doesn’t have any Length property!).

Three operators allows to simplify testing whenever a variable holds null
and behave accordingly, we detail them below.

null-Conditional Operator
The null-conditional operator ? allows to test if a variable holds null and
to avoid some NullReferenceException.

For example,

Console.WriteLine($"Length of a is: {a?.Length}.");

will display “Length of a is: 1.” if a holds a reference to an array of size 1,
and “Length of a is: .” if a holds a null. Stated differently, a?.Length
evaluates to the size of the array referenced by a if it exists, to null oth-
erwise.

One can similarly write a?[0] to either get a null (if a itself is null) or
the value at the first index of the array referenced by a.

null-Coalescing Operator

The null-coalescing operator ?? allows to assign a reference if it is not null,
and to assign a default value otherwise.

For example,

string s1 = null;
string s2 = s1 ?? "nothing";
Console.WriteLine($"s1 is {s1}, s2 is {s2}.");

will display “s1 is , s2 is nothing.”: the assignment s2 = s1 ?? "nothing"
“skipped” the value s1 since it was null and used "nothing" instead.

2

null-Coalescing Assignment Operator
The null-coalescing assignment operator ??= allows to re-assign a vari-
able if it is null.

For example,

s1 ??= "default";

will assign "default" to s1 if it is null, leave its value unchanged other-
wise. Note that this operator is available only starting with C# 8.0.

Nullable value types

It is also possible to make a value type nullable, so that it can contains
the null value. For example,

int[] a = null;
int aLength = a?.Length;

is not valid since a?.Length will evaluate to null, and an int variable
cannot contain a reference!

It is possible, however, to make aLength nullable, using the ? operator:

int[] a = null;
int? aLength = a?.Length;

This way, aLength can contain either an integer value, or the null refer-
ence.

To “convert” a nullable value type back into a “non-nullable” value type
can be done using the null-coalescing operator ??. For example,

int d = aLength ?? -1;

will assign aLength to d if it is not null, and -1 otherwise: note that either
way, d will end up containing a non-null value.

Testing for Equality
Motivation

A great care is required when comparing references, since one need to
make sure that

• null is accounted for,
• the comparison is “shallow” only if we want it to.

A “shallow” comparison compares only the “surface” of reference vari-
ables, as follows:

3

int[] a = { 10 };
int[] b = a;
int[] c = { 10 };

if (a == b){ Console.WriteLine("a and b refers the same
array."); }↪

if (a != c){ Console.WriteLine("a and c refers different
arrays."); }↪

Both tests would evaluate to true, since a and b do indeed refer to the
same array, while a and c refer to different arrays. In general, this is not
what is intended when comparing objects or arrays: we want to know if
what they refer to is identical.

Comparing Arrays

To compare arrays while accounting for possible null values, a great
care is needed. One can write a method as follows:

public static bool SameArray<T>(T[] arP1, T[] arP2)
{

if (arP1 == null && arP2 == null) { return true; }
else if (arP1 == null || arP2 == null) { return false;

}↪
else if (arP1.Length != arP2.Length) return false;
else {

for (int i = 0; i < arP1.Length; i++)
{

if (!Equals(arP1[i], arP2[i])) return false;
}

}
return true;

}

So that, if SameArray is passed…

• … two null references, it will return true since, indeed, the argu-
ments refers to “the same” array, which does not exist,

• … a null reference and a reference that is not null, it will return
false, as a non-existent array is not the same as an existing array,

• … two arrays of different size, it will return false,
• … two arrays of the same size, where every single value is the same,

it will return true.

Note that

• for the first two cases, one may decide to use throw new ArgumentNullException()
instead, because it could be argued comparing null references

4

is, precisely, shallow.
• it is ok to use arP1.Length and arP2.Length in our code, since we

know at that point that neither arP1 nor arP2 is null.
• we cannot use if (arP1[i] != arP2[i]) as C# doesn’t “know”

by default that what we use for T will accept this operator. Instead,
we have to use the “generic” Equals method.

Passing Arguments
Motivation

Consider the following “swapping” method and a Main method calling
it:

using System;

class Program
{
static void Main()
{
int a = 10;
int b = 20;
Console.WriteLine(

$"Before swap: a holds {a}, b holds {b}."
);
Swap(a, b);
Console.WriteLine(

$"After swap: a holds {a}, b holds {b}."
);

}

static void Swap(int a, int b)
{
int temp = a;
a = b;
b = temp;
Console.WriteLine(

$"Inside swap: a holds {a}, b holds {b}."
);

}
}

This program would display:

Before swap: a holds 10, b holds 20.
Inside swap: a holds 20, b holds 10.
After swap: a holds 10, b holds 20.

5

As we can see, the values held by the variables a and b are correctly
swapped by the Swap method, but this change is not “permanent”:
once the Swap method completed, a and b still have their “old” values
inside Main.

Since a method cannot return two values, making that change perma-
nent is difficult. A solution could be designed using arrays for example,
but it would require additional manipulation in the Mainmethod. Instead,
one can use references to pass the reference to the variables instead of
their values.

ref Keyword

The ref keyword can be used to pass the reference to a variable, as
follows:

using System;

class Program
{
static void Main()
{
int a = 10;
int b = 20;
Console.WriteLine(

$"Before swap: a holds {a}, b holds {b}."
);
Swap(ref a, ref b);
Console.WriteLine(

$"After swap: a holds {a}, b holds {b}."
);

}

static void Swap(ref int a, ref int b)
{
int temp = a;
a = b;
b = temp;
Console.WriteLine(

$"Inside swap: a holds {a}, b holds {b}."
);

}
}

Note that the change with the previous code is minimal: only the key-
word ref is added:

6

• In front of the datatype of the arguments in Swap’s header,
• In front of the name of the variables when the Swap method is

called.

Note that both edits are required: the first one stipulates that the Swap
method expects references, and the second one stipulates that the ref-
erences are passed.

This program would display:

Before swap: a holds 10, b holds 20.
Inside swap: a holds 20, b holds 10.
After swap: a holds 20, b holds 10.

Indeed, since the reference was passed, Swap stored the new values in
the same variables a and b, making the swapping “permanent”.

out Keyword

In some cases, one may want to pass a reference to a method simply
as an address where a value must be stored. The benefit is that this
reference does not need to contain a value before being passed to a
method.

For example, consider:

static void SetToRandom(ref int a)
{

Random gen = new Random();
a = gen.Next(10);

}

that sets the value of a reference to a random number between 0 and
9 (both included).

It cannot be called as follows:

int a; // This code will not compile
SetToRandom(ref a);

Because C#’s compilation will return the error message “Use of unas-
signed local variable ‘c’ ”. Indeed, SetToRandom expects the argument
to already holds a reference to a value, even if it has no use for it.

A better alternative is to use the out keyword:

using System;

class Program
{
static void Main()

7

{
int a;
SetToRandom(out a);
Console.WriteLine(a);

}

static void SetToRandom(out int a)
{
Random gen = new Random();
a = gen.Next(10);

}
}

Note that:

• The keyword out is similarly added in the header of the method and
when the argument is passed,

• The variable a is not given a value before being passed to the
method.

Summing up, the difference between refand out is that outdoes not re-
quire the reference to point to an actual value entering into the method
but it must hold a value by the time we exit the method.

To illustrate this last point, observe that

static void Dummy(out int a)
{

Console.WriteLine("Hi!");
}

would not compile, as C# would give back a message “The out param-
eter ‘a’ must be assigned to before controls leaves the current method”:
an argument passed using the keyword out must be initialized in the
body of the method.

8

	Reference Types
	Motivation
	null Value
	null-Conditional Operator
	null-Coalescing Operator

	null-Coalescing Assignment Operator
	Nullable value types

	Testing for Equality
	Motivation
	Comparing Arrays

	Passing Arguments
	Motivation
	ref Keyword
	out Keyword

