
Contents

Random 1

Random

• Random Number Generation

– Produce a number within some bounds following some statisti-
cal rules.

– A true random number is a number that is nondeterministically
selected froma set of numberswherein eachpossible selection
has an equal probability of occurrence.

– Usually in computer science we contend with pseudo-random
numbers. These are not truly nondeterministic, but an approxi-
mation of random selection based on some algorithm.

– Since pseudo-random selections are “determined” by an algo-
rithm, or set of rules, they are technically deterministic.

• Random Class in C#

– Instantiate a randomnumber generator and use to select num-
bers:

Random rand = new Random();
Random randB = new Random(seed_int);

– Notice that we can create a generator with or without an ar-
gument. The argument is called a seed for the generator.

– A seed tells the generator where to start its sequence. Using
the same seed will always reproduce the same sequence of
numbers.

– The default constructor still has a seed value, but it is a hidden
value pulled from the clock time during instantiation.

– Time-based seeds only reset approximately every 15 millisec-
onds.

– The random class is not “random enough” for cryptography.

– For cryptographic randomness, use the RNGCryptoService-
Provider1 class or System.Security.Cryptography.RandomNumberGenerator2.

• Using Random
1https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryp

toserviceprovider?view=net-5.0
2https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.randomn

umbergenerator?view=net-5.0

1

https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.randomnumbergenerator?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.randomnumbergenerator?view=net-5.0


– Next() method returns a pseudo-random number between 0
and 2,147,483,647 (max signed int), inclusive.

– By default, the number is always non-negative and within that
range.

int randomInt = rand.Next();

– What if we wanted to create a random number between 0
and 100?

– We could use rand.Next() and then use modulo to cut down
the answer range!

– Alternatively, we could give the Next() method an int argu-
ment to set a ceiling.

int randomUpto100 = rand.Next(101);

– The ceiling value is exclusive, so remember to use one number
higher than what you want to be your max number.

– We can also pass two arguments in order to set a range for the
values.

int random50to100 = rand.Next(50,101);

– The ceiling value is still exclusive, but the floor is inclusive.

– NextDouble() returns a normalized value (value between 0.0
and 1.0 inclusive).

– What if we want a different range? Adjust with math!

double randNeg2to3 - (rand.NextDouble()*5)-2;

– NextBytes() method takes a byte array as an argument and
generates a random byte value for each index.

– Remember, a byte has an unsigned value between 0 and 255
inclusive.

byte[] byteArray = new byte[10];
rand.NextBytes(byteArray);

• Creating Random Strings

– What if we want to construct random strings made of a, b, c,
and d?

– Other techniques are available, but we can use a loop and
switch!

Random rand = new Random();
string answer = "";
int selection = 0;

2



for(int i = 0; i < 10; i++)
{

selection = rand.Next(4);
switch(selection){
case(0):

answer+="a";
break;

case(1):
answer+="b";
break;

case(2):
answer+="c";
break;

default:
answer+="d";
break;

}
}

3


	Random

