2024-09-19
Random
· Random Number Generation
· Produce a number within some bounds following some statistical rules.
· A true random number is a number that is nondeterministically selected from a set of numbers wherein each possible selection has an equal probability of occurrence.
· Usually in computer science we contend with pseudo-random numbers. These are not truly nondeterministic, but an approximation of random selection based on some algorithm.
· Since pseudo-random selections are “determined” by an algorithm, or set of rules, they are technically deterministic.
· Random Class in C#
· Instantiate a random number generator and use to select numbers:
· Random rand = new Random();
Random randB = new Random(seed_int);
· Notice that we can create a generator with or without an argument. The argument is called a seed for the generator.
· A seed tells the generator where to start its sequence. Using the same seed will always reproduce the same sequence of numbers.
· The default constructor still has a seed value, but it is a hidden value pulled from the clock time during instantiation.
· Time-based seeds only reset approximately every 15 milliseconds.
· The random class is not “random enough” for cryptography.
· For cryptographic randomness, use the RNGCryptoServiceProvider class or System.Security.Cryptography.RandomNumberGenerator.
· Using Random
· Next() method returns a pseudo-random number between 0 and 2,147,483,647 (max signed int), inclusive.
· By default, the number is always non-negative and within that range.
· int randomInt = rand.Next();
· What if we wanted to create a random number between 0 and 100?
· We could use rand.Next() and then use modulo to cut down the answer range!
· Alternatively, we could give the Next() method an int argument to set a ceiling.
· int randomUpto100 = rand.Next(101);
· The ceiling value is exclusive, so remember to use one number higher than what you want to be your max number.
· We can also pass two arguments in order to set a range for the values.
· int random50to100 = rand.Next(50,101);
· The ceiling value is still exclusive, but the floor is inclusive.
· NextDouble() returns a normalized value (value between 0.0 and 1.0 inclusive).
· What if we want a different range? Adjust with math!
· double randNeg2to3 - (rand.NextDouble()*5)-2;
· NextBytes() method takes a byte array as an argument and generates a random byte value for each index.
· Remember, a byte has an unsigned value between 0 and 255 inclusive.
· byte[] byteArray = new byte[10];
rand.NextBytes(byteArray);
· Creating Random Strings
· What if we want to construct random strings made of a, b, c, and d?
· Other techniques are available, but we can use a loop and switch!
· Random rand = new Random();
string answer = "";
int selection = 0;

for(int i = 0; i < 10; i++)
{
 selection = rand.Next(4);
 switch(selection){
 case(0):
 answer+="a";
 break;
 case(1):
 answer+="b";
 break;
 case(2):
 answer+="c";
 break;
 default:
 answer+="d";
 break;
 }
}
