
Contents

Over and Underflow 1
Overflow . 1
Underflow . 3

Over and Underflow

Overflow
• Assume a car has a 4-digit odometer, and currently, it shows 9999.
What does the odometer show if you drive the car another mile?
As you might guess, it shows 0000 while it should show 10000. The
reason is the odometer does not have a counter for the fifth digit.
Similarly, in C#, when you do arithmetic operations on integral data,
the result may not fit in the corresponding data type. This situation
is called an overflow error.

• In an unsigned data type variable with 𝑁 bits, we can store the
numbers from 0 to 2𝑁 − 1. In signed data type variables, the high
order bit represents the sign of the number as follows:

• 0 means zero or a positive value

• 1 means a negative value

• With the remaining 𝑁 − 1 bits, we can represent 2(𝑁 − 1) val-
ues. Hence, considering the sign bit, we can store a number from
−2(𝑁 − 1) to 2(𝑁 − 1) − 1 in the variable.

• In some programming languages like C and C++, overflow errors
cause undefined behavior, and can crash your program. In C#,
however, the extra bits are just ignored, and the program will con-
tinue executing even though the value in the variable may not
make sense. If the programmer is not careful to check for the pos-
sibility of overflow errors, they can lead to unwanted program be-
havior and even severe security problems.

• For example, assume a company gives loans to its employee. Cou-
ples working for the company can get loans separately, but the
total amount cannot exceed $10,000. The following program looks
like it checks loan requests to ensure they are below the limit, but it
can be attacked using an overflow error. (This program uses notions
youmay have not studied yet, but that should not prevent you from
reading the source code and executing it.)

1

using System;

class Program
{
static void Main()
{
uint n1,

n2;

Console.WriteLine(
"Enter the requested loan amount for the first

person:"↪
);
n1 = uint.Parse(Console.ReadLine());

Console.WriteLine(
"Enter the requested loan amount for the second

person:"↪
);
n2 = uint.Parse(Console.ReadLine());

if (n1 + n2 < 10000)
{
Console.WriteLine($"Pay ${n1} to the first person");
Console.WriteLine($"Pay ${n2} to the second

person");↪
}
else
{

Console.WriteLine(
"Error: the sum of the loans exceeds the maximum

allowance."↪
);

}
}

}

• If the user enters 2 and 4,294,967,295, we expect to see the error
message (“Error: the sum of loans exceeds the maximum al-
lowance.”). However, this is not what will happen, and the request
will be accepted even though it should not have. The reason can
be explained as follows:

• uint is a 32-bit data type.
• Thebinary representation of 2 and 4,294,967,295 are 00000000000000000000000000000010
and 11111111111111111111111111111111.

• Therefore, the sumof these numbers should be 100000000000000000000000000000001,

2

which needs 33 bits.
• Nevertheless, there are only 32 bits available for the result, and the
extra bits will bedropped, so the result will be 00000000000000000000000000000001.
This is less than 10,000, so the program will conclude that the sum
of the loan values is less than 10,000.

Underflow
• Sometimes, the result of arithmetic operations over floating-point
numbers is smaller than theminimumvalue that canbe stored in the
corresponding data type. This problem is known as the underflow
problem.

• In C#, in case of an underflow, the result will be zero.
• For example, the smallest value that can be stored in a float vari-
able is 1.5 ⋅ 10−45. If we attempt to divide this value by 10, the
variable will get the value 0, not 1.5 ⋅ 10−46:

using System;

class Program
{
static void Main()
{
float myNumber;
myNumber = 1E-45f;
Console.WriteLine(myNumber); //outputs 1.401298E-45
myNumber = myNumber / 10;
Console.WriteLine(myNumber); //outputs 0
myNumber = myNumber * 10;
Console.WriteLine(myNumber); //outputs 0
myNumber = (1E-45f / 10) * 10;
Console.WriteLine(myNumber); //outputs 0

}
}

• Anunderflowerror can result in “losing” data in themiddle of a series
of operations: even if you immediately multiply by 10 again, the
intermediate result was less than 1.5 ⋅ 10−45, so the final result is still
0.

3

	Over and Underflow
	Overflow
	Underflow

