
Contents

Exceptions 1
Introduction . 1
Syntax and Rules for try…catch…finally Statements 2
Exception Class and Objects 4
Purpose of the finally Block 5
Scoping in try… catch… finally Statements 6
When To Use try… catch and When To Use TryParse? 7
Throwing an Exception . 8

Exceptions

Introduction
• At execution time programs can run into unspecified behaviour,
such as

– having to divide by zero,
– having to access an array at an index greater than its length.

• For example, the following instructions would compile just fine, but
at execution time the program would “explode”:

int zero = 0;
Console.WriteLine($"Let's divide by zero: {1 /

zero}.");↪

int[] test = new int[2];
test[2] = 3;

– In the first case, a “System.DivideByZeroException has been
thrown” error message would be displayed.

– In the second case, a “System.IndexOutOfRangeException
has been thrown” error message would be displayed.

– Those are examples of exceptions thrown by operations1.

• Methods can also throw exceptions. For example, the following
statement:

int x = int.Parse("This is not a number.");

will display a “System.FormatException has been thrown” error mes-
sage. This is because the Parsemethod can throw an exception2.

1https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-
specification/exceptions#215-common-exception-classes

2https://learn.microsoft.com/en-us/dotnet/api/system.int32.parse?view=net-
8.0#system-int32-parse(system-string)

1

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/exceptions#215-common-exception-classes
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/exceptions#215-common-exception-classes
https://learn.microsoft.com/en-us/dotnet/api/system.int32.parse?view=net-8.0#system-int32-parse(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.int32.parse?view=net-8.0#system-int32-parse(system-string)

• Of course, a programmer would not purposely introduce such
strange instructions in their code, but they may arise after interact-
ing with the “outside world”, that is, a user, file, or other external
factor.

• C# allows exception handling, which are ways of recovering when
such exceptions are thrown, so that the program can keep on exe-
cuting. Stated differently, they instruct the program what to do, for
example, if it is asked to perform a division by 0. This is handled by
catch blocks.

• C# also allows finally block, which contain code executed un-
conditionally, that is, regardless of if the exception was thrown or
not.

Syntax and Rules for try…catch…finally Statements
• In a first approximation, the syntax of a try…catch…finally state-
ment is as follows:

try{
<statement block 1>

}
catch{

<statement block 2>
}
finally{

<statement block 3>
}

• When executed, <statement block 1> will be executed state-
ment by statement. If, at any point, one of the statement in
<statement block 1> throws an exception, then the rest of
the statements in <statement block 1> will be discarded
and <statement block 2> will execute. After all of the state-
ments in <statement block 1> have executed, or after all of
the statements in <statement block 2> have executed, then
<statement block 3> will execute.

• A simple example is

try
{

Console.WriteLine("Enter a number.");
Console.WriteLine($"Your number is
{int.Parse(Console.ReadLine())}.");↪

}
catch

2

{
Console.WriteLine("Something was off.");

}
finally
{

Console.WriteLine("Did it worked?");
}

– If the user enters a string that contains only numbers (say, “10”),
then the program will display “Your number is 10.” then “Did it
worked?”.

– If the user enters a string that does not contain only numbers
(say, “No”), then the program will display “Something was off.”
then “Did it worked?”.

• Both the catch and the finally parts of the statement are op-
tional: they can be both present, or only one can occur in the try
block statement (however, you have to have one or the other).

• A try block can have multiple catch, as follows:

try
{

Console.WriteLine("Enter a number");
int uInput = int.Parse(Console.ReadLine());
Console.WriteLine($"Your number is {uInput}.");
Console.WriteLine($"Ten divided by your number is
{10 / uInput}.");↪

}
catch (DivideByZeroException)
{

Console.WriteLine("You tried to divide by zero.");
}
catch (FormatException)
{

Console.WriteLine("You have tried to convert a
string "↪
+ " containing non-numerical characters to a

number.");↪
}
finally
{

Console.WriteLine("Did it worked?");
}

– This allows amore fine-grained handling of the exceptions that
can be thrown.

3

– In the example, if a DivideByZeroException exception is
thrown, it is because the user entered “0” and the opera-
tion {10 / uInput} failed. In this case, we can display an
appropriate error message (“You tried to divide by zero”).

– In the example, if a FormatException exception is thrown, it
is because the user entered a string containing non-numerical
characters, and we can similarly return an appropriate error
message.

– Writing catch{…} is the same as catch (Exception){…}: by
default, a catch block catches all the exceptions that can
be thrown, not the exceptions of a particular class. Note
that, if specifying multiple catch blocks, the order matter,
as a catch (Exception), if placed first, will always execute
before the catch blocks put after.

Exception Class and Objects
• Technically speaking, an exception is an object in a particular class
that inherits from the exception class3.

• We can assign an identifier to it in the catch block, to be able to ac-
cess some of its properties such as the Message and a StackTrace
properties.

• For example, the IndexOutOfRangeException object returned
when trying to access an array outside of its bound can be named
ex and used to display particular information:

try
{

int[] test = new int[10];
for (int i = 0; i <= test.Length; i++)
{

test[i] = i;
}

}
catch (IndexOutOfRangeException ex)
{

Console.WriteLine(ex.Message);
Console.WriteLine(ex.StackTrace);

}

– When the statement test[10] = 10; gets executed, the
exception is thrown, named ex, and we display its message

3https://learn.microsoft.com/en-us/dotnet/standard/exceptions/exception-class-and-
properties

4

https://learn.microsoft.com/en-us/dotnet/standard/exceptions/exception-class-and-properties
https://learn.microsoft.com/en-us/dotnet/standard/exceptions/exception-class-and-properties

(“Index was outside the bounds of the array.”) and Stack-
Trace (“at Program.Main (System.String[] args) [0x0000f] in
<path>/Program.cs:<line>”, with <path> the path of the
Program.cs file, and <line> the line where the error occurs).

Purpose of the finally Block
• The difference between

try{
<statement block 1>

}
catch{

<statement block 2>
}
finally{

<statement block 3>
}

and

try{
<statement block 1>

}
catch{

<statement block 2>
}
<statement block 3>

is that in the second case, <statement block 3> may be
skipped if <statement block 1> or <statement block 2>
return a value, throw an exception that is not caught, or break
the flow of control (using for example break;). In the first case,
<statement block 3> will always4 get executed, no matter
which block gets executed and even if it breaks the control flow or
throws another exception.

• For example,

static bool GuessGame(string guessP)
{

const int valueToGuess = 12;
try
{

int guessV = int.Parse(guessP);
if (guessV == valueToGuess)
{

4That is, unless the program crashes or loops forever.

5

Console.WriteLine("You guessed it!");
return true;

}
else
{

Console.WriteLine("Try again!");
return false;

}
}
catch (FormatException)
{

Console.WriteLine("Please, provide a string
containing only numbers");↪

return false;
}
finally
{

Console.WriteLine("Thank you for playing!");
}

}

will always display “Thank you for playing!”. If this last statement was
not in the finally block, but was simply inserted after the try …
catch statement, then this message would actually never be dis-
played.

Scoping in try… catch… finally Statements
• Understanding the scope of statements in try… catch… finally
statements can be tricky.

• The general rules are:

– Variables declared in try, catch or finally blocks will not be
accessible outside of them,

– Variables whose value are set in the try block will keep the
value they had when the try block threw an exception.

• For example, in the following code,

int zero = -1;
try
{

zero = 0;
int x = 1 / zero;
zero = 2;

}
catch (DivideByZeroException)

6

{
Console.WriteLine("You tried to divide by " +
zero + ".");↪
zero = 3;

}
finally
{

Console.WriteLine("The variable holds " + zero +
".");↪

}

– This program will display

You tried to divide by 0.
The variable holds 3.

– The variable x would not be accessible to the catch or
finally blocks.

– If we were to remove the zero = 0; statement, then the pro-
gram would display “The variable holds 2.”.

When To Use try… catch and When To Use TryParse?
• If something goeswrong in amethod, thatmethodcaneither return
some error code or throw an exception.

• Returning an error code means possibly cluttering the signature of
the method with some extra parameters, as in the TryParsemeth-
ods.

• TryParse is “baking in” a way of signaling that something went
wrong because

1. This type of error is simple, common and predictable,
2. It decided not to care about why the parsing fails (it can be ei-

ther because the input is null, because it is not in valid format,
or because it produces an overflow).

• However, exceptions can handle those cases differently thanks to
different catch blocks:

Console.WriteLine("Test with" +
"\n\t- nothing (ctrl + d on linux, ctrl + z on

windows), " +↪
"\n\t- \"No\"," +
"\n\t- " + int.MaxValue + "+ 1 = 2147483648.");

try
{

int.Parse(Console.ReadLine());

7

}
catch (ArgumentNullException)
{

Console.WriteLine("No argument provided.");
}
catch (FormatException)
{

Console.WriteLine("The string does not contain
only number characters.");↪

}
catch (OverflowException)
{

Console.WriteLine("The number is greater than
what an integer can store.");↪

}

• So, in summary, TryParse is in general better if there is no need to
handle the different exceptions differently.

Throwing an Exception
• You can explicitly throw an exception by

– Creating an Exception object,
– Throwing it, using the throw keyword.

• For example, the property setter in the following class can explicitly
throw an ArgumentOutOfRangeException object if we try to cre-
ate a Circle object with a negative diameter:

 using System;

class Circle
{

private decimal diameter;
public decimal Diameter
{
get { return diameter; }
set
{
if (value <= 0)
{

throw new ArgumentOutOfRangeException();
}
else
{

diameter = value;

8

}
}

}

public Circle(decimal dP)
{

Diameter = dP;
}

public override string ToString()
{
return "Diameter: " + diameter;

}
}

• To use this class properly, every time the Diameter value is set (using
the set accessor, possibly via the constructor), a try… catch state-
ment should be used to handle a possible exception, with possibly
a loop around it, as follows:

 using System;

class Program
{

static void Main(string[] args)
{

Circle circle1 = new Circle(1);
Console.WriteLine(circle1);

try
{
circle1 = new Circle(-10);
Console.WriteLine("circle1: " + circle1);

}
catch (ArgumentOutOfRangeException)
{
Console.WriteLine($"Error: value was out of

range.");↪
}
Console.WriteLine(circle1);

bool circle_modified = false;
do
{
try
{

9

Console.WriteLine("Enter the circle new
diameter.");↪

int uInput = int.Parse(Console.ReadLine());
circle1.Diameter = uInput;
Console.WriteLine(circle1);
circle_modified = true;

}
catch (ArgumentOutOfRangeException)
{

Console.WriteLine(
$"Error: value was out of range."

);
}
catch
{

Console.WriteLine("Something went wrong.");
throw;

}
} while (!circle_modified);

}
}

• In the last catch block above, the throw; (without argument) will
pass the exception to the calling environment. It is indeed possi-
ble to catch the exception, do something with it (typically, log it or
display an error message), and then “pass” that exception to the
surrounding environment.

10

	Exceptions
	Introduction
	Syntax and Rules for try…catch…finally Statements
	Exception Class and Objects
	Purpose of the finally Block
	Scoping in try … catch… finally Statements
	When To Use try … catch and When To Use TryParse?
	Throwing an Exception

