2025-11-11
Actions
Motivation
Higher-order programming allows to manipulate for example methods themselves. This can be useful for many purposes, and is called “delegates” in C#. We explain its basics below, and refer to the sorting lecture for an example of how it can be used.
Definition
An action is
a method that has no parameters and does not return a value.
An “Action” is a method that has a single parameter (of type T) and does not return a value.
Here are for example three actions:
using System;

public static class ExampleActions
{
 public static void Test()
 {
 Console.WriteLine("Test");
 }
 public static void Display(int i)
 {
 Console.WriteLine(i);
 }
}

public static class ExampleActions<T>
{
 public static void DisplayArray(T[] arrayP)
 {
 for (int i = 0; i < arrayP.Length; i++)
 {
 Console.WriteLine(arrayP[i]);
 }
 }
}
· Test, Display and DisplayArray all have void as their return type,
· Test does not take any argument,
· Display takes an int as an argument,
· DisplayArray takes “an array of T” (that is, a generic type as an argument.
We can call those easily:
 ExampleActions.Test();
 ExampleActions.Display(3);
 ExampleActions<int>.DisplayArray(new int[] { 20, 30, 40 });
Manipulating Actions as Variables
We can also store them into variables and then call them:

 Action test_variable = ExampleActions.Test;
 test_variable();

 Action<int> display_variable = ExampleActions.Display;
 display_variable(10);

 Action<int[]> display_array_variable = ExampleActions<int>.DisplayArray;
 display_array_variable(new int[] { 10, 20, 30 });

 // Passing an action as an argument:
 CallingAction.Demo(ExampleActions.Test);
 CallingAction.DemoT(ExampleActions.Display);

 // Done passing an action.
 }
}
As we can see, ExampleActions.Display is of type Action<int> since the Display method takes an int as argument.
Action as Parameters
Method can take actions as parameter:
﻿using System;

public static class CallingAction
{
 public static void Demo(Action actionP)
 {
 Console.WriteLine("Now calling action: ");
 actionP();
 Console.WriteLine("Done calling action.");
 }

 public static void DemoT(Action<int> actionP)
 {
 Console.WriteLine("Now calling action with arguments ranging from 0 to 9:");
 for (int i = 0; i < 10; i++)
 {
 actionP(i);
 }
 Console.WriteLine("Done calling action.");
 }
}
and then can be passed an action as an argument:
 CallingAction.Demo(ExampleActions.Test);
 CallingAction.DemoT(ExampleActions.Display);
