
Contents

Computers and Programming 1
Principles of Computer Programming 1
Programming Language Concepts 1
Software Concepts . 4
Programming Concepts . 5

Programming workflow 5
(Integrated) Development Environment 7

Computers and Programming

Principles of Computer Programming
• Computer hardware changes frequently - from room-filling ma-
chines with punch cards and tapes to modern laptops and tablets
- and will continue doing so.

• With these changes, the capabilities of computers increase rapidly
(storage, speed, graphics, etc.)

• Computer programming languages also change
– Better programming language theory leads to new program-
ming techniques

– Improved programming language implementations
– New languages are created, old ones updated

• There are hundreds of programming languages1, why?
– Different tools for different jobs

∗ Some languages are better suited for certain jobs
∗ For example, Python is best for scripting, Javascript is best

for web pages, MySQL is best for databases, etc.
– Personal preference and popularity

• This class is about “principles” of computer programming
– Common principles behind all languages will not change,
even though hardware and languages do

– How to organize and structure data
– How to express logical conditions and relations
– How to solve problems with programs

Programming Language Concepts
We begin by discussing three categories of languages manipulated by
computers. We will be studying and writing programs in high-level lan-
guages, but understanding their differences and relationships to other

1https://www.wikiwand.com/en/List_of_programming_languages

1

https://www.wikiwand.com/en/List_of_programming_languages

languages2 is of importance to become familiar with them.

• Machine language
– Computers are made of electronic circuits

∗ Circuits are components connected by wires
∗ Some wires carry data - e.g. numbers
∗ Some carry control signals - e.g. do an add or a subtract

operation
– Instructions are settings on these control signals

∗ A setting is represented as a 0 or 1
∗ A machine language instruction is a group of settings - For

example: 1000100111011000
– Most CPUs use one of two languages: x86 or ARM

• Assembly language
– Easier way for humans to write machine-language instructions
– Instead of 1s and 0s, it uses letters and “words” to represent an
instruction.
∗ Example x86 instruction:
MOV BX, AX
which makes a copy of data stored in a component called AX
and places it in one called BX

– Assembler: Translates assembly language instructions to ma-
chine language instructions
∗ For example: MOV BX, AX translates into 1000100111011000
∗ One assembly instruction = one machine-language

instruction
∗ x86 assembly produces x86 machine code

– Computers can only execute the machine code
• High-level language

– Hundreds including C#, C++, Java, Python, etc.
– Most programs are written in a high-level language since:

∗ More human-readable than assembly language
∗ High-level concepts such as processing a collection of

items are easier to write and understand
∗ Takes less code since each statement might be translated

into several assembly instructions
– Compiler: Translates high-level language to machine code

∗ Finds “spelling” errors but not problem-solving errors
∗ Incorporates code libraries – commonly used pieces of

code previously written such as Math.Sqrt(9)
∗ Optimizes high-level instructions – your code may look very

different after it has been optimized
∗ Compiler is specific to both the source language and the

target computer
2That will be studied in the course of your study if you continue as a CS major.

2

– Compile high-level instructions into machine code then exe-
cute since computers can only execute machine code

High-Level Language

int age = 10;
char initial = 'C';

Assembly Language

movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $10, -4(%rbp)
movb $67, -5(%rbp)
movl $0, %eax
popq %rbp

Machine Language

01000010 01001001
00000000 00101110
00101110 01100111
01110101 01101001
01100100 00000000

Compiler

Assembler

Figure 1: A Visual Representation of the Relationships Between Lan-
guages

A more subtle difference exists between high-level languages. Some
(like C) are compiled (as we discussed above), some (like Python) are
interpreted, and some (like C#) are in an in-between called managed.

• Compiled vs. Interpreted languages
– Not all high-level languages use a compiler - some use an in-
terpreter

– Interpreter: Lets a computer “execute” high-level code by
translating one statement at a time to machine code

– Advantage: Less waiting time before you can execute the pro-
gram (no separate “compile” step)

– Disadvantage: Program executes slower since you wait for the
high-level statements to be translated then the program is ex-
ecuted

• Managed high-level languages (like C#)
– Combine features of compiled and interpreted languages
– Compiler translates high-level statements to intermediate lan-

guage instructions, not machine code
∗ Intermediate language: Looks like assembly language, but

not specific to any CPU
– run-time executes by interpreting the intermediate language
instructions - translates one at a time to machine code
∗ Faster since translation is partially done already (by com-

piler), only a simple “last step” is done when executing the
program

– Advantages of managed languages:

3

∗ In a “non-managed” language, a compiled program only
works on one OS + CPU combination (platform) because it
is machine code

∗ Managed-language programs can be reused on a differ-
ent platform without recompiling - intermediate language
is not machine code and not CPU-specific

∗ Still need to write an intermediate language interpreter for
each platform (so it produces the right machine code),
but, for a non-managed language, you must write a com-
piler for each platform

∗ Writing a compiler is more complicated and more work
than writing an interpreter thus an interpreter is a quicker
(and cheaper) way to put your language on different
platforms

∗ Intermediate-language interpreter is much faster than
a high-level language interpreter, so programs execute
faster than an “interpreted language” like Python

– This still executes slower than a non-managed language (due
to the interpreter), so performance-minded programmers use
non-managed compiled languages (e.g. for video games)

High-Level Language

Compiled printf("Hello, ");

printf("World!");

Interpreted print("Hello, ");

print("World!");

Managed Console.Write("Hello, ");

Console.Write("World!");

Intermediate Language

.maxstack 8

IL_0000: ldstr "Hello"

IL_0005: call void [mscorlib]

System.Console::WriteLine(string)

Machine Language

01000010 01001001

00000000 00101110

01000010 01001001

01000010 01001001

01000010 01001001

01000010 01001001

Output (on screen)

Hello, World!

Hello,

World!

Hello,

World!

Compiler

Compiler

Interpreter

Interpreter

Interpreter

Interpreter

Execution

Execution

Execution

Execution

Execution

Figure 2: A Visual Representation of the Differences Between High-Level
Languages

Software Concepts
• Flow of execution in a program

– Program receives input from some source, e.g. keyboard,
mouse, data in files

– Program uses input to make decisions
– Program produces output for the outside world to see, e.g. by
displaying images on screen, writing text to console, or saving
data in files

• Program interfaces
– GUI or Graphical User Interface: Input is from clicking mouse in
visual elements on screen (buttons, menus, etc.), output is by

4

drawing onto the screen
– CLI or Command Line Interface: Input is from text typed
into “command prompt” or “terminal window,” output is text
printed at same terminal window

– This class will use CLI because it is simple, portable, easy to work
with – no need to learn how to draw images, just read andwrite
text

Programming Concepts
Programming workflow

The workflow of the programmer will differ a bit depending on if the pro-
gram is written in a compiled or an intprepreted programming language.
From the distance, both looks like what is pictured in the the flowchart
demonstrating roles and tasks of a programmer, beta tester and user in
the creation of programs, but some differences remain:

• Compiled language workflow
– Writing down specifications
– Creating the source code
– Running the compiler
– Reading the compiler’s output, warning and error messages
– Fixing compile errors, if necessary
– Executing and testing the program
– Debugging the program, if necessary

• Interpreted language workflow
– Writing down specifications
– Creating the source code
– Executing the program in the interpreter
– Reading the interpreter’s output, determining if there is a syntax
(language) error or the program finished executing

– Editing the program to fix syntax errors
– Testing the program (once it can execute with no errors)
– Debugging the program, if necessary

Interpreted languages have

• Advantages: Fewer steps between writing and executing, can be
a faster cycle

• Disadvantages: All errors happen when you execute the program,
nodistinction between syntax errors (compile errors) and logic errors
(bugs in executing program)

5

Programmer

β-tester

User

Client

Write /
Edit Code

Does it
compile?

Debug

Run

Does it
”work”?

Success!

no

no

yes

yes

Test Match specification?

Figure 3: Flowchart demonstrating roles and tasks of a programmer, beta
tester and user in the creation of programs.

6

(Integrated) Development Environment

Programmers can either use a collection of tools to write, compile, de-
bug and execute a program, or use an “all-in-one” solution called an
Integrated Development Environment (IDE).

• The “Unix philosophy”3 states that a program should do only one
task, and do it properly. For programmers, this means that

– One program will be needed to edit the source code, a text
editor (it can be Geany, notepad, kwrite, emacs, sublime text,
vi, etc.),

– One program will be needed to compile the source code, a
compiler (for C#, it will be either mono4 or Roslyn5,

– Other programs may be needed to debug, execute, or orga-
nize larger projects, such as makefile or MKBundle6.

IDE “bundle” all of those functionality into a single interface, to ease the
workflow of the programmer. This means sometimes that programmers
have fewer control over their tools, but that it is easier to get started.

• Integrated Development Environment (IDE)
– Combines a text editor, compiler, file browser, debugger, and
other tools

– Helps you organize a programming project
– Helps you write, compile, and test code in one place

In particular, Visual Studio is an IDE, and it uses its own vocabulary:

• Solution: An entire software project, including source code, meta-
data, input data files, etc.

• “Build solution”: Compile all of your code
• “Start without debugging”: Execute the compiled code
• Solution location: The folder (on your computer’s file system) that
contains the solution, meaning all your code and the information
needed to compile and execute it

3https://www.wikiwand.com/en/Unix_philosophy
4https://www.wikiwand.com/en/Mono_(software)
5https://www.wikiwand.com/en/Roslyn_(compiler)
6https://www.mono-project.com/docs/tools+libraries/tools/mkbundle/

7

https://www.wikiwand.com/en/Unix_philosophy
https://www.wikiwand.com/en/Mono_(software)
https://www.wikiwand.com/en/Roslyn_(compiler)
https://www.mono-project.com/docs/tools+libraries/tools/mkbundle/

	Computers and Programming
	Principles of Computer Programming
	Programming Language Concepts
	Software Concepts
	Programming Concepts
	Programming workflow
	(Integrated) Development Environment

