2024-09-19
Computers and Programming
Principles of Computer Programming
· Computer hardware changes frequently - from room-filling machines with punch cards and tapes to modern laptops and tablets - and will continue doing so.
· With these changes, the capabilities of computers increase rapidly (storage, speed, graphics, etc.)
· Computer programming languages also change
· Better programming language theory leads to new programming techniques
· Improved programming language implementations
· New languages are created, old ones updated
· There are hundreds of programming languages, why?
· Different tools for different jobs
· Some languages are better suited for certain jobs
· For example, Python is best for scripting, Javascript is best for web pages, MySQL is best for databases, etc.
· Personal preference and popularity
· This class is about “principles” of computer programming
· Common principles behind all languages will not change, even though hardware and languages do
· How to organize and structure data
· How to express logical conditions and relations
· How to solve problems with programs
Programming Language Concepts
We begin by discussing three categories of languages manipulated by computers. We will be studying and writing programs in high-level languages, but understanding their differences and relationships to other languages[footnoteRef:22] is of importance to become familiar with them. [22: That will be studied in the course of your study if you continue as a CS major.]

· Machine language
· Computers are made of electronic circuits
· Circuits are components connected by wires
· Some wires carry data - e.g. numbers
· Some carry control signals - e.g. do an add or a subtract operation
· Instructions are settings on these control signals
· A setting is represented as a 0 or 1
· A machine language instruction is a group of settings - For example: 1000100111011000
· Most CPUs use one of two languages: x86 or ARM
· Assembly language
· Easier way for humans to write machine-language instructions
· Instead of 1s and 0s, it uses letters and “words” to represent an instruction.
· Example x86 instruction:
· MOV BX, AX
· which makes a copy of data stored in a component called AX and places it in one called BX
· Assembler: Translates assembly language instructions to machine language instructions
· For example: MOV BX, AX translates into 1000100111011000
· One assembly instruction = one machine-language instruction
· x86 assembly produces x86 machine code
· Computers can only execute the machine code
· High-level language
· Hundreds including C#, C++, Java, Python, etc.
· Most programs are written in a high-level language since:
· More human-readable than assembly language
· High-level concepts such as processing a collection of items are easier to write and understand
· Takes less code since each statement might be translated into several assembly instructions
· Compiler: Translates high-level language to machine code
· Finds “spelling” errors but not problem-solving errors
· Incorporates code libraries – commonly used pieces of code previously written such as Math.Sqrt(9)
· Optimizes high-level instructions – your code may look very different after it has been optimized
· Compiler is specific to both the source language and the target computer
· Compile high-level instructions into machine code then execute since computers can only execute machine code
[image: img/overview_languages_1.svg]
A Visual Representation of the Relationships Between Languages
A more subtle difference exists between high-level languages. Some (like C) are compiled (as we discussed above), some (like Python) are interpreted, and some (like C#) are in an in-between called managed.
· Compiled vs. Interpreted languages
· Not all high-level languages use a compiler - some use an interpreter
· Interpreter: Lets a computer “execute” high-level code by translating one statement at a time to machine code
· Advantage: Less waiting time before you can execute the program (no separate “compile” step)
· Disadvantage: Program executes slower since you wait for the high-level statements to be translated then the program is executed
· Managed high-level languages (like C#)
· Combine features of compiled and interpreted languages
· Compiler translates high-level statements to intermediate language instructions, not machine code
· Intermediate language: Looks like assembly language, but not specific to any CPU
· run-time executes by interpreting the intermediate language instructions - translates one at a time to machine code
· Faster since translation is partially done already (by compiler), only a simple “last step” is done when executing the program
· Advantages of managed languages:
· In a “non-managed” language, a compiled program only works on one OS + CPU combination (platform) because it is machine code
· Managed-language programs can be reused on a different platform without recompiling - intermediate language is not machine code and not CPU-specific
· Still need to write an intermediate language interpreter for each platform (so it produces the right machine code), but, for a non-managed language, you must write a compiler for each platform
· Writing a compiler is more complicated and more work than writing an interpreter thus an interpreter is a quicker (and cheaper) way to put your language on different platforms
· Intermediate-language interpreter is much faster than a high-level language interpreter, so programs execute faster than an “interpreted language” like Python
· This still executes slower than a non-managed language (due to the interpreter), so performance-minded programmers use non-managed compiled languages (e.g. for video games)
[image: img/overview_languages_2.svg]
A Visual Representation of the Differences Between High-Level Languages
Software Concepts
· Flow of execution in a program
· Program receives input from some source, e.g. keyboard, mouse, data in files
· Program uses input to make decisions
· Program produces output for the outside world to see, e.g. by displaying images on screen, writing text to console, or saving data in files
· Program interfaces
· GUI or Graphical User Interface: Input is from clicking mouse in visual elements on screen (buttons, menus, etc.), output is by drawing onto the screen
· CLI or Command Line Interface: Input is from text typed into “command prompt” or “terminal window,” output is text printed at same terminal window
· This class will use CLI because it is simple, portable, easy to work with – no need to learn how to draw images, just read and write text
Programming Concepts
Programming workflow
[image: img/flowchart.svg]
Flowchart demonstrating roles and tasks of a programmer, beta tester and user in the creation of programs.
The workflow of the programmer will differ a bit depending on if the program is written in a compiled or an intprepreted programming language. From the distance, both looks like what is pictured in the the flowchart demonstrating roles and tasks of a programmer, beta tester and user in the creation of programs, but some differences remain:
· Compiled language workflow
· Writing down specifications
· Creating the source code
· Running the compiler
· Reading the compiler’s output, warning and error messages
· Fixing compile errors, if necessary
· Executing and testing the program
· Debugging the program, if necessary
· Interpreted language workflow
· Writing down specifications
· Creating the source code
· Executing the program in the interpreter
· Reading the interpreter’s output, determining if there is a syntax (language) error or the program finished executing
· Editing the program to fix syntax errors
· Testing the program (once it can execute with no errors)
· Debugging the program, if necessary
Interpreted languages have
· Advantages: Fewer steps between writing and executing, can be a faster cycle
· Disadvantages: All errors happen when you execute the program, no distinction between syntax errors (compile errors) and logic errors (bugs in executing program)
(Integrated) Development Environment
Programmers can either use a collection of tools to write, compile, debug and execute a program, or use an “all-in-one” solution called an Integrated Development Environment (IDE).
· The “Unix philosophy” states that a program should do only one task, and do it properly. For programmers, this means that
· One program will be needed to edit the source code, a text editor (it can be Geany, notepad, kwrite, emacs, sublime text, vi, etc.),
· One program will be needed to compile the source code, a compiler (for C#, it will be either mono or Roslyn,
· Other programs may be needed to debug, execute, or organize larger projects, such as makefile or MKBundle.
IDE “bundle” all of those functionality into a single interface, to ease the workflow of the programmer. This means sometimes that programmers have fewer control over their tools, but that it is easier to get started.
· Integrated Development Environment (IDE)
· Combines a text editor, compiler, file browser, debugger, and other tools
· Helps you organize a programming project
· Helps you write, compile, and test code in one place
In particular, Visual Studio is an IDE, and it uses its own vocabulary:
· Solution: An entire software project, including source code, metadata, input data files, etc.
· “Build solution”: Compile all of your code
· “Start without debugging”: Execute the compiled code
· Solution location: The folder (on your computer’s file system) that contains the solution, meaning all your code and the information needed to compile and execute it
rId23.svg

rId26.png
Compiler

Assembler
)

High-Level Language . Machine Language

Tot age = 10 wovq trsp, %xbp 01000010 01001001

char initial .cfi_def_cfa register 6 00000000 00101110

00101110 01100111
01110101 01101001
01100100 00000000

movl §10, -4(Urbp)
movb $67, -5(lrbp)
movl 0, feax
popa_ Yirbp

rId27.svg

rId30.png
High-Level Language

Machine Language

Output (on screen)

printd (Hello, © Compiler 01000010 01001001] __ Execution _fyyqy1 woylay
printf ("Horldi"); 00000000 00101110 :
Interpreter Execution
T —— Grooooia oro0ient |
print (Morlai)5 Interpreter — e
01000010 01001001 recution World!
Interpreter ecuti

et © 01000010 01001001 Execution Hello,)
Console.Write("Hello, M;) (0mpler |IL_0000: ldstr "Hello"
o (e e IL.0005: call void [mscorlib] Interpreter Execution

|Systen. Consol

WriteLine(string)

01000010 01001001

rId34.svg

rId37.png
Progeanmer

B-tester

User

