
Contents

While Loops 1
Introduction to while loops 1
Example code with a while loop 1
Syntax and rules for while loops 2
While loops may execute zero times 3
Ensuring the loop ends . 3
Principles of writing a while loop 5
While Loop With Complex Conditions 5

While Loops

Introduction to while loops
• There are two basic types of decision structures in all programming
languages. We’ve just learned about the first, which is the “selec-
tion structure,” or if statement. This allows the program to choose
whether or not to execute a block of code, based on a condition.

• The second basic decision structure is the loop, which allows the
program to execute the same block of code repeatedly, and
choose when to stop based on a condition.

• The while statement executes a block of code repeatedly, as long
as a condition is true. You can also think of it as executing the code
repeatedly until a condition is false

Example code with a while loop
int counter = 0;
while(counter <= 3)
{

Console.WriteLine("Hello again!");
Console.WriteLine(counter);
counter++;

}
Console.WriteLine("Done");

• After the keyword while is a condition, in parentheses: counter <= 3

• On the next line after the while statement, the curly brace begins
a code block. The code in this block is “controlled” by the while
statement.

• The computer will repeatedly execute that block of code as long
as the condition counter <= 3 is true

1

• Note that inside this block of code is the statement counter++,
which increments counter by 1. So eventually, counter will be
greater than 3, and the loop will stop because the condition is false.

• This program produces the following output:

Hello again!
0
Hello again!
1
Hello again!
2
Hello again!
3
Done

Syntax and rules for while loops
• Formally, the syntax for a while loop is this:

while(<condition>)
{

<statements>
}

• Just like with an if statement, the condition is any expression that
produces a bool value (including a bool variable by itself)

• When the computer encounters a while loop, it first evaluates the
condition

• If the condition is false, the loop body (code block) is skipped, just
like with an if statement

• If the condition is true, the loop body is executed

• After executing the loop body, the computer goes back to the
while statement and evaluates the condition again to decide
whether to execute the loop again

• Just like with an if statement, the curly braces can be omitted if
the loop body is just one statement:

while(<condition>)
<statement>

• Examining the example in detail

• When our example program executes, it initializes counter to 0,
then it encounters the loop

2

• It evaluates the condition counter <= 0, which is true, so it exe-
cutes the loop’s body. The program displays “Hello again!” and
“0” on the screen.

• At the end of the codeblock (after counter++) the program returns
to the while statement and evaluates the condition again. 1 is less
than 3, so it executes the loop’s body again.

• This process repeats two more times, and the program displays
“Hello again!” with “2” and “3”

• After displaying “3”, counter++ increments counter to 4. Then the
program returns to the while statement and evaluates the condi-
tion, but counter <= 3 is false, so it skips the loop body and exe-
cutes the last line of code (displaying “Done”)

While loops may execute zero times
• You might think that a “loop” always repeats code, but nothing re-
quires a while loop to execute at least once

• If the condition is false when the computer first encounters the loop,
the loop body is skipped

• For example, if we initialize counter to 5 with our previous loop:

int counter = 5;
while(counter <= 3)
{

Console.WriteLine("Hello again!");
Console.WriteLine(counter);
counter++;

}
Console.WriteLine("Done");

The programwill only display “Done,” because the body of the loop
never executes. counter <= 3 is false the first time it is evaluated,
so the program skips the code block and continues on the next line.

Ensuring the loop ends
• If the loop condition is always true, the loop will never end, and
your program will execute “forever” (until you forcibly stop it, or the
computer shuts down)

• Obviously, if you use the value true for the condition, the loop will
execute forever, like in this example:

3

int number = 1;
while (true)

Console.WriteLine(number++);

• If you do not intend your loop to execute forever, you must ensure
the statements in the loop’s body do something to change a vari-
able in the loop condition, otherwise the condition will stay true

• For example, this loop will execute forever because the loop condi-
tion uses the variable counter, but the loop body does not change
the value of counter:

int counter = 0;
while(counter <= 3)
{

Console.WriteLine("Hello again!");
Console.WriteLine(counter);

}
Console.WriteLine("Done");

• This loop will also execute forever because the loop condition uses
the variable num1, but the loop body changes the variable num2:

int num1 = 0, num2 = 0;
while(num1 <= 5)
{

Console.WriteLine("Hello again!");
Console.WriteLine(num1);
num2++;

}
Console.WriteLine("Done");

• It’s not enough for the loop body to simply change the variable; it
must change the variable in a way that will eventually make the
condition false

– For example, if the loop condition is counter <= 5, then the
loop bodymust increase the value of counter so that it is even-
tually greater than 5

– This loop will execute forever, even though it changes the right
variable, because it changes the value in the wrong “direc-
tion”:

int number = 10;
while(number >= 0)
{

Console.WriteLine("Hello again!");
Console.WriteLine(number);

4

number++;
}

The loop condition checks to see whether number is ≥ 0, and
number starts out at the value 10. But the loopbody increments
number, which only moves it further away from 0 in the positive
direction. In order for this loop to work correctly, we need to
decrement number in the loop body, so that eventually it will
be less than 0.

– This loop will execute forever, even though it uses the right vari-
able in the loop body, because it multiplies the variable by 0:

int number = 0;
while (number <= 64)
{

Console.WriteLine(number);
number *= 2;

}

Since number was initialized to 0, number *= 2 does not actu-
ally change the value of number: 2×0 = 0. So the loop body
will never make the condition number <= 64 false.

Principles of writing a while loop
• When writing a while loop, ask yourself these questions about your
program:

1. When (under what conditions) do I want the loop to continue?
2. When (under what conditions) do I want the loop to stop?
3. How will the body of the loop bring it closer to its ending con-

dition?

• This will help you think clearly about how to write your loop condi-
tion. You should write a condition (Boolean expression) that will be
true in the circumstances described by (1), and false in the cir-
cumstances described by (2)

• Keep your answer to (3) in mind as you write the body of the loop,
andmake sure the actions in your loop’s bodymatch the condition
you wrote.

While Loop With Complex Conditions
In the following example, a complex boolean expression is used in the
while statement. The program gets a value and tries to parse it as an
integer. If the value can not be converted to an integer, the program
tries again, but not more than three times.

5

int c;
string message;
int count;
bool res;

Console.WriteLine("Please enter an integer.");
message = Console.ReadLine();
res = int.TryParse(message, out c);
count = 0; // The user has 3 tries: count will be 0, 1, 2,

and then we default.↪
while (!res && count < 3)
{

count++;
if (count == 3)
{

c = 1;
Console.WriteLine("I'm using the default value

1.");↪
}
else
{

Console.WriteLine("The value entered was not an
integer.");↪

Console.WriteLine("Please enter an integer.");
message = Console.ReadLine();
res = int.TryParse(message, out c);

}
}
Console.WriteLine("The value is: " + c);

6

	While Loops
	Introduction to while loops
	Example code with a while loop
	Syntax and rules for while loops
	While loops may execute zero times
	Ensuring the loop ends
	Principles of writing a while loop
	While Loop With Complex Conditions

