
Contents

The foreach Loop 1

The foreach Loop

• When writing a for loop that accesses each element of an array
once, you will end up writing code like this:

for(int i = 0; i < myArray.Length; i++)
{

<do something with myArray[i]>;
}

• In some cases, this code has unnecessary repetition: If you are not
using the counter i for anything other than an array index, you
still need to declare it, increment it, and write the condition with
myArray.Length

• The foreach loop is a shortcut that allows you to get rid of the
counter variable and the loop condition. It has this syntax:

foreach(<type> <variableName> in <arrayName>)
{

<do something with variable>
}

– The loop will repeat exactly as many times as there are ele-
ments in the array

– On each iteration of the loop, the variable will be assigned the
next value from the array, in order

– The variable must be the same type as the array

• For example, this loop accesses each element of homeworkGrades
and computes their sum:

int sum = 0;
foreach(int grade in homeworkGrades)
{

sum += grade;
}

– The variable grade is declared with type int since homeworkGrades
is an array of int

– grade has a scope limited to the body of the loop, just like the
counter variable i

– In successive iterations of the loop grade will have the value
homeworkGrades[0], then homeworkGrades[1], and so on,

1



through homeworkGrades[homeworkGrades.Length - 1]

• A foreach loop is read-only with respect to the array: The loop’s
variable cannot be used to change any elements of the array. This
code will result in an error:

foreach(int grade in homeworkGrades)
{

grade = int.Parse(Console.ReadLine());
}

2


	The foreach Loop

