
Contents

do while 1
Comparing while and if statements 1
Code duplication in while loops 2
Introduction to do-while . 2
Formal syntax and details of do-while 3
do-while loops with multiple conditions 4

do while

Comparing while and if statements
• while and if are very similar: Both test a condition, execute a

block of code if the condition is true, and skip the block of code
if the condition is false

• There is only a difference if the condition is true: if statements only
execute the block of code once if the condition is true, but while
statements may execute the block of code multiple times if the con-
dition is true

• Compare these snippets of code:

if(number < 3)
{

Console.WriteLine("Hello!");
Console.WriteLine(number);
number++;

}
Console.WriteLine("Done");

and

while(number < 3)
{

Console.WriteLine("Hello!");
Console.WriteLine(number);
number++;

}
Console.WriteLine("Done");

• If number is 4, then both will do the same thing: skip the block of
code and display “Done”.

• If number is 2, both will also do the same thing: Display “Hello!” and
“2”, then increment number to 3 and print “Done”.

1

• If number is 1, there is a difference: The if statement will only display
“Hello!” once, but the while statement will display “Hello! 2” and
“Hello! 3” before displaying “Done”

Code duplication in while loops
• Since the while loop evaluates the condition before executing the

code in the body (like an if statement), you sometimes end up
duplicating code

• For example, consider an input-validation loop like the one we
wrote for Item prices:

Console.WriteLine("Enter the item's price.");
decimal price = decimal.Parse(Console.ReadLine());
while(price < 0)
{

Console.WriteLine("Invalid price. Please enter a
non-negative price.");↪
price = decimal.Parse(Console.ReadLine());

}
Item myItem = new Item(desc, price);

• Before the while loop, we wrote two lines of code to prompt the
user for input, read the user’s input, convert it to decimal, and store
it in price

• In the body of the while loop, we also wrote two lines of code
to prompt the user for input, read the user’s input, convert it to
decimal, and store it in price

• The code before the while loop is necessary to give pricean initial
value, so that we can check it for validity in the while statement

• It would be nice if we could tell the while loop to execute the body
first, and then check the condition

Introduction to do-while
• The do-while loop executes the loop body before evaluating the

condition

• Otherwise works the same as a while loop: If the condition is true,
execute the loop body again; if the condition is false, stop the loop

• This can reduce repeated code, since the loop body is executed
at least once

• Example:

2

decimal price;
do
{

Console.WriteLine("Please enter a non-negative
price.");↪
price = decimal.Parse(Console.ReadLine());

} while(price < 0);
Item myItem = new Item(desc, price);

• The keyword do starts the code block for the loop body, but it does
not have a condition, so the computer simply starts executing the
body

• In the loop body, we prompt the user for input, read and parse the
input, and store it in price

• The condition price < 0 is evaluated at the end of the loop body,
so price has its initial value by the time the condition is evaluated

• If the user entered a valid price, and the condition is false, execution
simply proceeds to the next line

• If the user entered a negative price (the condition is true), the com-
puter returns to the beginning of the code block and executes the
loop body again

• This has the same effect as the while loop: the user is prompted
repeatedly until he/she enters a valid price, and the program can
only reach the line Item myItem = new Item(desc, price)
when price < 0 is false

• Note that the variable price must be declared before the
do-while loop so that it is in scope after the loop. It would not be
valid to declare price inside the body of the loop (e.g. on the line
with decimal.Parse) because then its scope would be limited to
inside that code block.

Formal syntax and details of do-while
• A do-while loop is written like this:

do
{

<statements>
} while(<condition>);

• The do keyword does nothing, but it is required to indicate the start
of the loop. You cannot just write a { by itself.

– Unlike a while loop, a semicolon is required after while(<condition>)

3

– It’s a convention to write the while keyword on the same line
as the closing }, rather than on its own line as in a while loop

– When the computer encounters a do-while loop, it first exe-
cutes the body (code block), then evaluates the condition

– If the condition is true, the computer jumps back to the do key-
word and executes the loop body again

– If the condition is false, execution continues to the next line af-
ter teh while keyword

– If the loop body is only a single statement, you can omit the
curly braces, but not the semicolon:

do
<statement>
while(<condition>);

do-while loops with multiple conditions
• We can combine both types of user-input validation in one loop:

Ensuring the user entered a number (not some other string), and
ensuring the number is valid. This is easier to do with a do-while
loop:

decimal price;
bool parseSuccess;
do
{

Console.WriteLine("Please enter a price (must be
non-negative).");↪
parseSuccess = decimal.TryParse(Console.ReadLine(),
out price);↪

} while(!parseSuccess || price < 0);
Item myItem = new Item(desc, price);

• There are two parts to the loop condition: (1) it should be true if
the user did not enter a number, and (2) it should be true if the user
entered a negative number.

• We combine these two conditions with || because either one, by
itself, represents invalid input. Even if the user entered a valid num-
ber (which means !parseSuccess is false), the loop should not stop
unless price < 0 is also false.

• Note that both variables must be declared before the loop begins,
so that they are in scope both inside and outside the loop body

4

	do while
	Comparing while and if statements
	Code duplication in while loops
	Introduction to do-while
	Formal syntax and details of do-while
	do-while loops with multiple conditions

