
Contents

Booleans 1
Variables . 1
Operations on Boolean Values 1
Equality and Relational Operators 2
Equality Operators . 3
Relational Operators . 4
Precedence of Operators . 4

Booleans

Variables
We can store if something is true or false (“The user has reached the age
of majority”, “The switch is on”, “The user is using Windows”, “This com-
puter’s clock indicates that we are in the afternoon”, …) in a variable of
type boolean, which is also known as a boolean flag. Note that true
and false are the only possible two values for boolean variables: there
is no third option!

We can declare, assign, initialize and display a boolean variable (flag)
as with any other variable:

bool learning_how_to_program = true;
Console.WriteLine(learning_how_to_program);

Operations on Boolean Values
Boolean variables have only two possible values (true and false), but
we can use three operations to construct more complex booleans:

1. “and” (&&, conjunction),
2. “or” (||, disjunction),
3. “not” (!, negation).

Each has the precise meaning described here:

1. the condition “A and B” is true if and only if A is true, and B is true,
2. “A or B” is false if and only if A is false, and B is false (that is, it takes

only one to make their disjunction true),
3. “not A” is true if and only if A is false (that is, “not” “flips” the value it

is applied to).

The expected results of these operations can be displayed in truth tables,
as follows:

1

Operation Value

true && true true
true && false false
false && true false
false && false false

Operation Value

true || true true
true || false true
false || true true
false || false false

Operation Value

!true false
!false true

These tables can also be written in 2-dimensions, as can be seen for con-
junction on wikipedia1.

Equality and Relational Operators
Boolean values can also be set through expressions, or tests, that “eval-
uate” a condition or series of conditions as true or false. For instance,
you can write an expression meaning “variable myAge has the value 12”
which will evaluate to true if the value of myAge is indeed 12, and to
false otherwise. To ease your understanding, we will write “expression
→ true” to indicate that “expression” evaluates to true below, but this
is not part of C#’s syntax.

Here we use two kinds of operators:

• Equality operators test if two values (literal or variable) are the same.
This works on all datatypes.

• Relational operators test if a value (literal or variable) is greater or
smaller (strictly or largely) than an other value or variable.

Relational operators will be primarily used for numerical values.
1https://www.wikiwand.com/en/Truth_table#Logical_conjunction_(AND)

2

https://www.wikiwand.com/en/Truth_table#Logical_conjunction_(AND)

Equality Operators
In C#, we can test for equality and inequality using two operators, ==
and !=.

Mathematical Notation C# Notation Example

= == 3 == 4 → false
≠ != 3!=4 → true

Note that testing for equality uses two equal signs: C# already uses a
single equal sign for assignments (e.g. myAge = 12;), so it had to pick
another notation! It is fairly common across programing languages to
use a single equal sign for assignments and double equal for compar-
isons.

Writing a != b (“a is not the same as b”) is actually logically equivalent
to writing !(a == b) (“it is not true that a is the same as b”), and both
expressions are acceptable in C#.

We can test numerical values for equality, but actually any datatype can
use those operators. Here are some examples for int, string, char and
bool:

int myAge = 12;
string myName = "Thomas";
char myInitial = 'T';
bool cs_major = true;
Console.WriteLine("My age is 12: " + (myAge == 12));
Console.WriteLine("My name is Bob: " + (myName == "Bob"));
Console.WriteLine("My initial is Q: " + (myInitial ==

'Q'));↪
Console.WriteLine("My major is Computer Science: " +

cs_major);↪

This program will display

My age is 12: True
My name is Bob: False
My initial is Q: False
My major is Computer Science: True

Remember that C# is case-sensitive, and that applies to the equality op-
erators as well: for C#, the string Thomas is not the same as the string
thomas. This also holds for characters like a versus A.

Console.WriteLine("C# is case-sensitive for string
comparison: " + ("thomas" != "Thomas"));↪

3

Console.WriteLine("C# is case-sensitive for character
comparison: " + ('C' != 'c'));↪

Console.WriteLine("But C# does not care about 0 decimal
values: " + (12.00 == 12));↪

This program will display:

C# is case-sensitive for string comparison: True
C# is case-sensitive for character comparison: True
But C# does not care about 0 decimal values: True

Relational Operators
We can test if a value or a variable is greater than another, using the
following relational operators.

Mathematical Notation C# Notation Example

> > 3 > 4 → false
< < 3 < 4 → true

≥ or ⩾ >= 3 >= 4 → false
≤ or ⩽ <= 3 <= 4 → true

Relational operators can also compare char, but the order is a bit com-
plex (you can find it explained, for instance, in this stack overflow an-
swer2).

Precedence of Operators
All of the operators have a “precedence”, which is the order in which
they are evaluated. The precedence is as follows:

Operator

! is evaluated before
*, /, and % which are evaluated before
+ and - which are evaluated before

<, >, <=, and >= which are evaluated before
== and != which are evaluated before

&& which is evaluated before
|| which comes last.

2https://stackoverflow.com/a/14967721/

4

https://stackoverflow.com/a/14967721/

• Operators with higher precedence (higher in the table) are evalu-
ated before operators with lower precedence (lower in the table).
For instance, in an expression like 2*3+4, 2*3 will have higher prece-
dence than 3+4, and thus be evaluated first: 2*3+4 is to be read
as (2*3)+4 = 6 + 4 = 10 and not as 2*(3+4) = 2*7 = 14.

• Operators on the same row have equal precedence and are
evaluated in the order they appear, from left to right: in
1-2+3, 1-2 will be evaluated before 2+3: 1-2+3 is to be read
as (1-2)+3 = -1 + 3 = 2 and not as 1-(2+3) = 1-5 = 4.

• Forgetting about precedence can lead to errors that can be hard
to debug: for instance, an expression such as ! 4 == 2 will give
the error

The `!' operator cannot be applied to operand of type
`int'↪

Since ! has a higher precedence than ==, C# first attempts to compute
the result of !4, which corresponds to “not 4”. As negation (!) is an op-
eration that can be applied only to booleans, this expression does not
make sense and C# reports an error. The expression can be rewritten to
change the order of evaluation by using parentheses, e.g. you can write
!(4 == 2), which will correctly be evaluated to true.

5

	Booleans
	Variables
	Operations on Boolean Values
	Equality and Relational Operators
	Equality Operators
	Relational Operators
	Precedence of Operators

