Contents

Searching in Arrays 1
Finding the Maximum Value 1
Finding a ParticularValue 1
Finding a Particular Value in a Sorted Array 3

Sorted Arrays L L 3
BinarySearch L 3

Searching in Arrays

We now discuss how we can search for values in an array.

Finding the Maximum Value

To find the greatest value in an array of integer, one needs a comparison
point, a variable holding “the greatest value so far”. Once this value is set,
then one “just” have to inspect each value in the array, and to update
“the greatest value so far” if the value currently inspected is greater, and
then to move on to the next value. Once we reach the end of the array,
we know that “the greatest value so far” is actually the greatest value
(period) in the array.

The problem is to find the starting point: one cannot assume that “the
greatest value so far” is 0 (what if the array contains only negative val-
ues?), so the best strategy is simply to assume that “the greatest value so
far” is the first one in the array (after all, it is the greatest value we have
seen so far).

Using foreach, we have for example the following:
int[] arrayExample = { 1, 8, -12, 9, 10, 1, 30, 1, 32, 3
(Y };

int maxSoFar = arrayExample[0];
foreach (int 1 in arrayExample)
if (1 > maxSoFar) maxSoFar = {i;

Console.WriteLine("The greatest value is "
+ maxSoFar + ".");

Finding a Particular Value

Suppose we want to set a particular Boolean variable to true if a par-
ficular value target is present in an arrayy arrayExample. The simplest

way to perform such a search is to

1. Set the Boolean variable to false,

2. Inspect the values in arrayExample one by one, comparing them
fo target, and setting the Boolean variable o true if they are iden-
fical.

int[] arrayExample = { 1, 8, -12, 9, 10, 1, 30, 1, 32, 3
= };

bool foundTarget = false;
int target = 8;

for (int 1 = 0; 1 < arrayExample.Length; i++)

{

if (arrayExample[i] == target) foundTarget = true;
}
Console.WriteLine(target + " is in the array: " +
-~ foundTarget + ".");

Note that in the particular example above, we could have stopped
exploring the array after the second index, since the target value was
found. A slightly different logic would allow to exit prematurely the loop
when the target value is found

int[] arrayExample = { 1, 8, -12, 9, 10, 1, 30, 1, 32, 3
(=Y },

bool foundYet = false;
int target = 30;
int index = 0;

do

{
if (arrayExample[index] == target) foundYet = true;
index++;

}

while (index < arrayExample.Length && !foundYet);

Console.WriteLine(target + " is in the array: " +

- foundYet +

"\nNumber of elements inspected: " + (index) +".");

This code would display:

30 is in the array: True
Number of elements inspected: 7.

Both codes are examples of linear (or sequential) search: the array is
parsed one element after the other, and potentially all elements are in-

spected.

Finding a Particular Value in a Sorted Array

If the array is sorfed (that is, the value at index ¢ is less than the value at
index ¢ + 1), then the search for a particular value can be sped up by
using binary search.

Sorted Arrays

A way of making sure that an array is sorted is given below. Note
that, as above when frying to find the maximum value, we decide
that the array is “sorted so far” unless proven otherwise, in which case
we exit prematurely the loop. Note also that the condition contains
index + 1 < arrayExample.Length: we needto make sure that “the
next value” actually exists before comparing it with the current value.

int[] arrayExample = { 1, 10, 12, -1};
bool sortedSoFar = true;
int index = 0;

while (index + 1 < arrayExample.Length && sortedSoFar)
{

if (arrayExample[index] > arrayExample[index+1])

«~ sortedSoFar = false;

index++;
}
Console.WriteLine("The array is sorted: " + sortedSoFar
o +II.II);

Binary Search

Introduction Binary (half-inferval or logarithmic) search leverages the
fact that the array is sorted to speed up the search for a particular value.
It goes as follows:

The algorithm compares the target value to the middle element of the
array.

1. If they are equal, we are done.
2. If they are not equal, then there are two cases:

(a) If the middle element is greater than the target, then the al-
gorithm restarts, but looking for the value only in the left half of
the array,

(b) If the middle element is less than the target, then the algo-
rithm restarts, but looking for the value only in the right half of
the array.

3. If the search ends with the remaining half being empty, the target
is not in the array.

First Example An example of implementation (and of execution) is as
follows:

int[] arrayExample = { 1, 10, 12, 129, 190, 220, 230,
-~ 310, 320, 340, 400, 460};
bool foundSoFar = false;

int target = 340;

int start = 0;
int end = arrayExample.Length - 1;
int mid;
while (start <= end && !foundSoFar)
{
mid = (start + end) / 2;
/*
* This is integer division: if start + end is odd,
* then it will be truncated. In our example,
* (0 + 11) / 2 gives 5.

*/
Console.WriteLine("The middle index is " + mid + ".");
if (target == arrayExample[mid])
{
foundSoFar = true;
}
else if (target > arrayExample[mid])
{
start = mid + 1;
Console.WriteLine("I keep looking right.");
}
else
{
end = mid - 1;
Console.WriteLine("I keep looking left.");
}
}
Console.WriteLine("Found the value: " + foundSoFar +".");

This code would display:

The middle index is 5.
I keep looking right.
The middle index 1is 8.
I keep looking right.
The middle index is 10.
I keep looking left.
The middle index is 9.
Found the value: True.

Second Example Remembering that characters are suchthat ‘A’ isless

than 'a', and 'a' isless than 'b', we can run a binary search on a

sorted array of characters. The code below is the same algorithm as

above, only the information logged changes:

char[] arrayExample = { 'A*, 'B', 'D', 'Z', 'a', 'b', 'd’
Y },

char target = 'D';

bool foundSoFar = false;

int start = 0;

int end = arrayExample.Length - 1;

int mid;
while (start <= end && !foundSoFar)
{
Console.WriteLine("Range: " + start + " -- " + end);
mid = (start + end) / 2;
Console.WriteLine("Mid: " + mid);
if (target == arrayExample[mid])
{
foundSoFar = true;
}
else if (target > arrayExample[mid])
{
start = mid + 1;
}
else
{
end = mid - 1;
}
}
Console.WriteLine("Found the value: " + foundSoFar + ".");
This will display:
Range: 0 -- 6
Mid: 3
Range: 0 -- 2
Mid: 1

Range: 2 -- 2

Mid: 2

Found the value: True

Observe that if we were to replace start <= end with start < end
then the algorithm would not have correctly terminated in the example
above.

	Searching in Arrays
	Finding the Maximum Value
	Finding a Particular Value
	Finding a Particular Value in a Sorted Array
	Sorted Arrays
	Binary Search

