
Contents

Introduction 1
Data Types . 1
Abstract Data Types . 1
Data Structures . 2
Summarizing . 2
Arrays . 2

Introduction

Let us begin by explaining the differences between data types, abstract
data types and data structures.

Data Types
Data types are the most basic classification of data, usually given as

• a set of possible values,
• a set of allowed operations on them,
• a concrete representation for computer to manipulate.

An examples is intwith its arithmetic operators, represented using 32 bits
with the Int32 Struct.

Abstract Data Types
An abstract data type (ADT) is a mathematical model for data types,
typically giving

• possible values,
• possible operations on data of this type,
• behavior of those operations.

They are very close to data types, with the following exceptions:

• They exist only conceptually, they have no concrete existence in
the context of a language,

• They define the “contractual agreement” regarding their behavior.

An example is the notion of “sets”, given as a universe, a union operation
that returns the union of its elements, a subset predicates that returns
“true” if the first argument is a subset of the second, etc.

1

https://en.wikipedia.org/wiki/Data_type
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/arithmetic-operators
https://learn.microsoft.com/en-us/dotnet/api/system.int32?view=net-9.0
https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Set_(abstract_data_type)

Data Structures
Data structures are concrete representations of data (comprised of mul-
tiple values), from the point of view of a programmer, and not from a
user’s perspective. It is in general given by

• data values,
• the relationships among them,
• the functions or operations that can be applied to the data.

They are generally useful for storing and retrieving data, that is, collection
of values.

Summarizing
• An abstract data type is the “description”, the interface, the con-

tract: this is the most abstract perspective, describing the behavior
of the structure you want to manipulate.

• A data type is the implementation of an abstract data type describ-
ing “atoms” of data, giving concrete instructions to the computer
for how to manipulate simple (isolated) values.

• A data structure is the implementation of an abstract data type de-
scribing how to manipulate “collections” of data, giving concrete
instructions to the computer for how to manipulate multiple values
at the same time.

Note that some abstract data types are implemented as data types:
integers can be given as an abstract data type and are (imperfectly)
implemented in C# as int1 Some abstract data types are (imperfectly)
implemented as data structures, for example strings of text are imple-
mented in the String class.

Arrays
Arrays are data structures that allow you to store multiple values in mem-
ory using a single name and indexes. Internally, an array contains a fixed
number of variables (called elements) of a particular type2. The ele-
ments in an array are always stored in a contiguous block of memory,
providing fast and efficient access.

An array can be:

• Single-Dimensional,
• Multidimensional.

1Typically, int cannot correctly add 2,147,483,647 (the value of int.MaxValue) and 2,
making it an imperfect implementation of integers.

2Usually, all the elements of an array have the same type, but an array can store ele-
ments of different types if object is its type, since any element is actually of type object.

2

https://en.wikipedia.org/wiki/Data_structure
https://cs.stackexchange.com/questions/153597/are-integers-an-abstract-data-type
https://learn.microsoft.com/en-us/dotnet/api/system.string?view=net-9.0

Multidimensional arrays can be

• Jagged,
• Rectangular.

Arrays are useful, for instance,

• When you want to store a collection of related values,
• When you do not know in advance how many variables will be

needed,
• When you need a large number of variables (say, 10) of the same

type,
• When you want to represent matrices (as you can use an array of

arrays to represent 2-dimensional objects).

3

	Introduction
	Data Types
	Abstract Data Types
	Data Structures
	Summarizing
	Arrays

