
Contents

Arrays of Objects 1
Array of Objects From a Custom Class 1
Arrays of Arrays . 2

Rectangular Multi-Dimensional Array 2
Jagged Array . 3
Comparing Use Cases for Rectangular and Jagged Arrays . 4

Arrays of Objects

An array can contain more than simple datatypes: it can contain ob-
jects. It can be objects from a custom class, or even … arrays, which are
themselves objects!

Array of Objects From a Custom Class
In the following example, we will ask the user how many Item objects
(the details of the implementation do not matter, but can be inspired by
this example) they want to create, then fill an array with Item objects
initialized from user input:

Console.WriteLine("How many items would you like to
stock?");↪

Item[] items = new Item[int.Parse(Console.ReadLine())];
int i = 0;
while(i < items.Length)
{

Console.WriteLine($"Enter description of item
{i+1}:");↪
string description = Console.ReadLine();
Console.WriteLine($"Enter price of item {i+1}:");
decimal price = decimal.Parse(Console.ReadLine());
items[i] = new Item(description, price);
i++;

}

Observe that, since we do not perform any user-input validation, we can
simply use the result of int.Parse() as the size declarator for the items
array - no size variable is needed at all.

We can also use while loops to search through arrays for a particular
value. For example, this code will find and display the lowest-priced item
in the array items, which was initialized by user input:

1

https:/princomp.github.io/lectures/flow/control_flow_and_classes#setters-with-input-validation
https:/princomp.github.io/lectures/flow/control_flow_and_classes#setters-with-input-validation

Item lowestItem = items[0];
int i = 1;
while(i < items.Length)
{

if(items[i].GetPrice() < lowestItem.GetPrice())
{

lowestItem = items[i];
}
i++;

}
Console.WriteLine($"The lowest-priced item is

{lowestItem}");↪

Note that the lowestItem variable needs to be initialized to refer to an
Item object before we can call the GetPrice() method on it; we can-
not call GetPrice() if lowestItem is null. We could try to create an
Item object with the “highest possible” price, but a simpler approach is
to initialize lowestItem with items[0]. As long as the array has at least
one element, 0 is a valid index, and the first item in the array can be our
first “guess” at the lowest-priced item.

Arrays of Arrays
An array of arrays is called a multi-dimensional array. A multi-dimensional
array can be rectangular (it then represents an 𝑛-dimensional block of
memory) or jagged (in that case, it is an array of arrays).

Rectangular Multi-Dimensional Array

Also called 2-dimensional arrays, their syntax is very close to that of 1-
dimensional arrays:

int[,] matrix = new int[2, 3];

where 2 is the number of rows, and 3 is the number of columns. They can
be accessed with matrix.GetLength(0) and matrix.GetLength(1)
respectively.

Assignment is as for 1-dimensional arrays, starting at 0:

matrix[0, 0] = 1;
matrix[0, 1] = 2;
matrix[0, 2] = 3;
matrix[1, 0] = 4;
matrix[1, 1] = 5;
matrix[1, 2] = 6;

This will produce a matrix as follows:

2

0th col. 1st col. 2nd col.

0th row 1 2 3
1st row 4 5 6

We could also have used a shortened notation to declare this 2-
dimensional array, as follows:

int[,] matrix = new int[,]
{

{1,2,3},
{4,5,6}

};

or even simply

int[,] matrix = {{1,2,3},{4,5,6}};

To display such an array, nested loops are needed:

for (int row = 0; row < matrix.GetLength(0); row++)
{

for (int col = 0; col < matrix.GetLength(1); col++)
Console.Write(matrix[row, col] + " ");

Console.WriteLine();
}

Jagged Array

A jagged array is an array of arrays. The difference from rectangular
arrays is that the arrays stored can be of varying sizes. The syntax of a
jagged array is as follows:

int [][] jaggedArray = new int[3][];

Here, 3 is the number of rows, but the number of columns is not included:
this is because the stored arrays are different sizes, so the number of
columns will vary depending on the row.

The syntax is straightforward once understood that jagged arrays are ex-
actly arrays of arrays:

int[][] jaggedArray = new int[3][];
jaggedArray[0] = new int[3] { 1, 2, 3 };
jaggedArray[1] = new int[2] { 4, 5 };
jaggedArray[2] = new int[5] { 6, 7, 8, 9, 10 };

for (int row = 0; row < jaggedArray.Length; row++)
{

3

Console.Write("The row #" + row + " contain: ");
for (
int arrayCell = 0;
arrayCell < jaggedArray[row].Length;
arrayCell++

)
{
Console.Write(jaggedArray[row][arrayCell] + " ");

}
Console.WriteLine("");

}

In this example, it should be clear that jaggedArray[row] is itself an
array, and hence that we can use e.g., jaggedArray[row].Length or
jaggedArray[row][arrayCell].

Comparing Use Cases for Rectangular and Jagged Arrays

The main distinction between rectangular and jagged arrays is that the
former is more consistent with its sizing–in other words, in a rectangular
array, each array housed within it will be the same size in every row, by
definition. In contrast, jagged arrays are not as consistent. This can be
seen in the difference between how rectangular and jagged arrays are
initialized. Recall that, when initializing a rectangular array, the number
of rows and columns is required, but only the number of rows is required
for a jagged array.

Therefore, when deciding which type of array to use in a given situation,
you will want to base it off of whether you need an array that is pre-
dictable in its sizing. If you want to make a table where most or every
cell will be filled, a rectangular array will make more sense, whereas a
jagged array will be preferred when the number of entries per row could
be highly variable or difficult to predict.

Rectangular arrays work well when creating a matrix (an array of
numbers used in mathematics, especially in linear algebra) or a
table/spreadsheet of data where the number of data points (and,
therefore, the number of columns) is consistent in each row. Jagged
arrays work well when the number of data points varies. A good exam-
ple would be if you want to use an array to store the time it takes you
to run a lap. If you run the same number of laps every single time you
run, without fail, then a rectangular array may work here. However, the
more likely scenario is that the number will vary. In this case, a jagged
array is better: the array in each row will be whatever size it needs to be
in order to accommodate all of the data.

4

	Arrays of Objects
	Array of Objects From a Custom Class
	Arrays of Arrays
	Rectangular Multi-Dimensional Array
	Jagged Array
	Comparing Use Cases for Rectangular and Jagged Arrays

