
Contents

Switch 1
Switch Statements . 1

Multiple equality comparisons 1
Syntax for switch statements 3
Example switch statement 4
switch with multiple statements 5
Intentionally omitting break 6
Scope and switch . 8
Limitations of switch . 9

Switch

Switch Statements
Multiple equality comparisons

• In some situations, your program will need to test if a variable is
equal to one of several values, and perform a different action
based on which value the variable matches

• For example, you have an int variable named month containing a
month number, and want to convert it to a string with the name
of the month. This means your program needs to take a different
action depending on whether month is equal to 1, 2, 3, … or 12:

• One way to do this is with a series of if-else-if statements, one
for each possible value, like this:

Console.WriteLine("Enter the month as a number
between 1 and 12.");↪

int month = int.Parse(Console.ReadLine());
string monthName;
if(month == 1)
{

monthName = "January";
}
else if(month == 2)
{

monthName = "February";
}
else if(month == 3)
{

monthName = "March";
}

1

Assigning the number of a month to its name

Ask the number

January February December Error!

”The number ” + month + ” corresponds to. . .

[1]

[2] [12]

[Not between 1 and 12]

Figure 1: “A flowchart representation of the mapping between month
number and name”

else if(month == 4)
{

monthName = "April";
}
else if(month == 5)
{

monthName = "May";
}
else if(month == 6)
{

monthName = "June";
}
else if(month == 7)
{

monthName = "July";
}
else if(month == 8)
{

monthName = "August";
}
else if(month == 9)

2

{
monthName = "September";

}
else if(month == 10)
{

monthName = "October";
}
else if(month == 11)
{

monthName = "November";
}
else if(month == 12)
{

monthName = "December";
}
else
{

monthName = "Error!"; // Invalid month
}
Console.WriteLine("The number " + month + "

corresponds to the month " + monthName + ".")↪

• This code is very repetitive, though: every else if statement
is almost the same, with only the number changing. The text
“if(month ==” is copied over and over again.

Syntax for switch statements

• A switch statement is a simpler, easier way to compare a single
variable against multiple possible values

• It is written like this:

switch (<variable name>)
{

case <value 1>:
<statement block 1>
break;

case <value 2>:
<statement block 2>
break;

…
default:

<statement block n>
break;

}

3

• First, the “header” of the switch statement names the variable that
will be compared

• The “body” of the switch statement is enclosed in curly braces, and
contains multiple case statements

• Each case statement gives a possible value the variable could
have, and a block of statements to execute if the variable equals
that value. Statement block 1 is executed if the variable is equal
to value 1, statement block 2 is executed if the variable is equal to
value 2, etc.

• The statement “block” within each case is not enclosed in curly
braces, unlike if and else if blocks. Instead, it begins on the
line after the case statement, and ends with the keyword break.

• The default statement is like the else statement: It defines code
that gets executed if the variable does not match any of the values
in the case statements.

• The values in each case statement must be literals, not variables,
and they must be unique (you cannot write two case statements
with the same value)

Example switch statement

• This program has the same behavior as our previous example, but
uses a switch statement instaed of an if-else-if statement:

Console.WriteLine("Enter the month as a number
between 1 and 12.");↪

int month = int.Parse(Console.ReadLine());
string monthName;
switch(month)
{

case 1:
monthName = "January";
break;

case 2:
monthName = "February";
break;

case 3:
monthName = "March";
break;

case 4:
monthName = "April";
break;

case 5:

4

monthName = "May";
break;

case 6:
monthName = "June";
break;

case 7:
monthName = "July";
break;

case 8:
monthName = "August";
break;

case 9:
monthName = "September";
break;

case 10:
monthName = "October";
break;

case 11:
monthName = "November";
break;

case 12:
monthName = "December";
break;

default:
monthName = "Error!"; // Invalid month
break;

}
Console.WriteLine("The number " + month + "

corresponds to the month " + monthName + ".")↪

• Since the variable in the switch statement is month, each case
statement means, effectively, if (month == <value>). For ex-
ample, case 1: has the same effect as if (month == 1)

• The values in each case statement must be int literals, since month
is an int

• The default statement has the same effect as the final else in the
if-else-if statement: it contains code that will be executed if
month did not match any of the values

switch with multiple statements

• So far, our examples have used only one line of code in each case

• Unlike if-else, you do not need curly braces to put multiple lines
of code in a case

5

• For example, imagine our “months” program needed to convert a
month number to both a month name and a three-letter abbrevia-
tion. The switch would look like this:

string monthName;
string monthAbbrev;
switch(month)
{

case 1:
monthName = "January";
monthAbbrev = "Jan";
break;

case 2:
monthName = "February";
monthAbbrev = "Feb";
break;

// and so on, with all the other months...
}

• The computer knows which statements are included in each case
because of the break keyword. For the “1” case, the block of
statements starts after case 1: and ends with the break; after
monthAbbrev = "Jan";

Intentionally omitting break

• Each block of code that starts with a case statement must end with
a break statement; it will not automatically end at the next case
statement

– The case statement only defines where code execution starts
when the variable matches a value (like an open {). The break
statement defines where it ends (like a close }).

• However, there is one exception: A case statement with no body
(code block) after it does not need a matching break

• If there is more than one value that should have the same behavior,
you can write case statements for both values above a single block
of code, with no break between them. If either one matches, the
computer will execute that block of code, and then stop at the
break statement.

• In a switch statement with this structure:

switch(<variable>)
{

case <value 1>:
case <value 2>:

6

<statement block 1>
break;

case <value 3>:
case <value 4>:

<statement block 2>
break;

default:
<statement block 3>
break;

}

The statements in block 1 will execute if the variable matches value
1 or value 2, and the statements in block 2 will execute if the vari-
able matches value 3 or value 4.

• For example, imagine our program needs to tell the user which sea-
son the month is in. If the month number is 1, 2, or 3, the season is
the same (winter), so we can combine these 3 cases. This code will
correctly initialize the string season:

switch(month)
{

case 1:
case 2:
case 3:

season = "Winter";
break;

case 4:
case 5:
case 6:

season = "Spring";
break;

case 7:
case 8:
case 9:

season = "Summer";
break;

case 10:
case 11:
case 12:

season = "Fall";
break;

default:
season = "Error!"
break;

}

If month is equal to 1, execution will start at case 1:, but the

7

computer will continue past case 2 and case 3 and execute
season = "Winter". It will then stop when it reaches the break,
so season gets the value “Winter”. Similarly, if month is equal to
2, execution will start at case 2:, and continue until the break
statement, so season will also get the value “Winter”.

• This syntax allows switch statements to have conditions with
a logical OR, equivalent to an if condition with an ||, like
if(x == 1 || x == 2)

• For example, the “seasons” statement could also be written as an
if-else-if with || operators, like this:

if(month == 1 || month == 2 || month == 3)
{

season = "Winter";
}
else if(month == 4 || month == 5 || month == 6)
{

season = "Spring";
}
else if(month == 7 || month == 8 || month == 9)
{

season = "Summer";
}
else if(month == 10 || month == 11 || month == 12)
{

season = "Fall"
}
else
{

season = "Error!"
}

Scope and switch

• In C#, the scope of a variable is defined by curly braces (recall that
local variables defined in a method have a scope that ends with
the } at the end of the method)

• Since the case statements in a switch do not have curly braces,
they are all in the same scope: the one defined by the switch
statement’s curly braces

• This means you cannot declare a “local” variable within a case
statement – it will be in scope (visible) to all the other case state-
ments

8

• For example, imagine you wanted to use a local variable named
nextMonth to do some local computation within each case in the
“months” program. This code will not work:

switch(month)
{

case 1:
int nextMonth = 2;
monthName = "January";
// do something with nextMonth...
break;

case 2:
int nextMonth = 3;
monthName = "February";
// do something with nextMonth...
break;

//...
}

The line int nextMonth = 3 would cause a compile error be-
cause a variable named nextMonth already exists – the one
declared within case 1.

Limitations of switch

• Not all if-else-if statements can be rewritten as switch state-
ments

• switch can only test equality, so in general, only if statements
whose condition uses == can be converted to switch

• For example, imagine we have a program that determines how
much of a fee to charge a rental car customer based on the num-
ber of miles the car was driven. A variable named mileage con-
tains the number of miles driven, and it is used in this if-else-if
statement:

decimal fee = 0;
if(mileage > 1000)
{

fee = 50.0M;
}
else if(mileage > 500)
{

fee = 25.0M;
}

• This if-else-if statement could not be converted to switch(mileage)

9

because of the condition mileage > 1000. The switch statement
would need to have a case for each number greater than 1000,
which is infinitely many.

10

	Switch
	Switch Statements
	Multiple equality comparisons
	Syntax for switch statements
	Example switch statement
	switch with multiple statements
	Intentionally omitting break
	Scope and switch
	Limitations of switch

