
Contents

Recursion 1
Introduction . 1
First Examples . 1
Recursive Methods Returning a Value 3

Multiplication . 3
Factorial . 4

Listing Files and Directories – Recursively 4

Recursion

The code for this lecture is available in this archive1 (first parts) and this
one2 (listing files and folders recursively).

Introduction
Recursion is a central notion in programming, simple to state but difficult
to master: a method is recursive if it calls itself. This concept is related
to the idea of repetition, or looping, of program parts, and come with
the same danger of not terminating. Below, we present some simple
recursive programs: while some could bewritten without recursion, some
would be very hard, if possible at all, to write without using recursion.

First Examples
Consider the following:

static void displayAll(int n)
{
if (n > 0)
{

Console.Write($"{n} ");
displayAll(n - 1);

}
}

If we call displayAll(3);, then the following will happen:

1. displayAll(3) will test that 3>0,
2. displayAll(3) will display “3 ”,
3. displayAll(3) will call displayAll(2),

(a) displayAll(2) will test that 2>0,
1https:/princomp.github.io/code/projects/RecursionHelloWorld.zip
2https:/princomp.github.io/code/projects/ListDirectoriesFileRecursively.zip

1

https:/princomp.github.io/code/projects/RecursionHelloWorld.zip
https:/princomp.github.io/code/projects/ListDirectoriesFileRecursively.zip

(b) displayAll(2) will display “2 ”,
(c) displayAll(2) will call displayAll(1),

i. displayAll(1) will test that 1>0,
ii. displayAll(1) will display “1 ”,
iii. displayAll(1) will call displayAll(0),

A. displayAll(0) will test that 0>0,
B. displayAll(0) will terminate.

iv. displayAll(1) will terminate.
(d) displayAll(2) will terminate.

4. displayAll(3) will terminate.

Hence, displayAll calls itself with a smaller number, unless that number
is 0, in which case it simply terminates. In our example, it would display
“3 2 1 ”.

When the function calls itself matters a lot. Indeed, consider
displayRAll, which calls itselfbefore executing the Console.WriteLine
instruction:

static void displayRAll(int n)
{
if (n > 0)
{

displayRAll(n - 1);
Console.Write($"{n} ");

}
}

If we call displayRall(3);, then the following will happen:

1. displayRall(3) will test that 3>0,
2. displayRall(3) will call displayRall(2),

(a) displayRall(2) will test that 2>0,
(b) displayRall(2) will call displayRall(1),

i. displayRall(1) will test that 1>0,
ii. displayRall(1) will call displayRall(0),

A. displayRall(0) will test that 0>0,
B. displayRall(0) will terminate.

iii. displayRall(1) will display “1 ”,
iv. displayRall(1) will terminate.

(c) displayRall(2) will display “2 ”,
(d) displayRall(2) will terminate.

3. displayRall(3) will display “3 ”,
4. displayRall(3) will terminate.

In this example, “1 2 3 ” would be displayed: the order is reversed with
respect to displayAll!

2

❗ Caution

Recursion can be very powerful and can very easily make your
program crash or misbehave. To see it for yourself, after saving all
important documents, replace - with + in the previous examples and
run the programs again.

displayAll is an example of tail recursion: the recursive call is the last
statement in the method. displayRAll is an example of head recur-
sion: the recursive call is the first statement in the method. They are
furthormore both examples of linear recursion, as they call themselves
only once.

Recursive Methods Returning a Value
Recursivemethods can also return a value, used by previous calls to com-
pute some other value.

Multiplication

For example, consider that multiplication can be defined by addition:
indeed, 𝑥 × 𝑦 is 𝑦 + 𝑦 + 𝑦 + … + 𝑦 where 𝑦 is summed 𝑥 times. Stated
differently (read: recursively), 𝑥 × 𝑦 is 𝑦 + ((𝑥 − 1) × 𝑦). We can
implement such a program easily:

static int mult(int x, int y)
{
if (x == 0)
{

return 0;
}
else if (x == 1)
{

return y;
}
else
{

return y + mult(x - 1, y);
}

}

For example, mult(2, 10) tests that 2 is neither 0 nor 1, and adds 10
with the result of mult(1, 10), which is 10 since the first argument is 1.

Observe that mult(10000000, 0) would call mult 10000001 times and
add 0 to itself 10000001 times: this algorithm is not very efficient!

3

Factorial

The factorial of 𝑛 is 𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × (𝑛 − 3) × … × 1.
This function can easily be implemented using recursion:

static int factorial(int n)
{
if (n == 0)

return 1;
else

return (factorial(n - 1) * n);
}

Note that this code actually compute e.g., 5! = 5 × 4 × 3 × 2 × 1 × 1
(with one superfluous ×1): can you see why?

Listing Files and Directories – Recursively
Whilemultiplication and factorial can be implementedwithout recursion,
some structures makes it natural, or even required, to use recursion. Go-
ing through folders and files is an example of such situation.

 using System;
using System.IO;

class Program
{
static void Main()
{
// We first locate where we currently are.
DirectoryInfo currentDir = new DirectoryInfo(

Directory.GetCurrentDirectory()
);
Console.WriteLine("Starting from " + currentDir +
".");↪
int count = 5;
// We go up 5 folders or until we reach the
// root folder, whichever comes first.
while (currentDir.Parent != null && count > 0)
{

currentDir = currentDir.Parent;
count--;
Console.WriteLine("Going up to " + currentDir +

".");↪
}
Console.WriteLine(

"Now listing files and folders from here:"

4

);
ListDir(currentDir.ToString());

}

// Code in part inspired from
// https://stackoverflow.com/a/929277
static void ListDir(string sourceDir)
{
try
{

Console.WriteLine(sourceDir);

foreach (string file in
Directory.GetFiles(sourceDir))↪

Console.WriteLine(file);

foreach (
string directory in Directory.GetDirectories(

sourceDir
)

)
ListDir(directory);

}
catch (Exception e)
{

Console.WriteLine(e.Message);
}

}
}

Note that our previous examples were calling themselves only once per
method call, but that ListDir calls itself as many times as there are fold-
ers in the folder currently examined.

5

	Recursion
	Introduction
	First Examples
	Recursive Methods Returning a Value
	Multiplication
	Factorial

	Listing Files and Directories – Recursively

