
Contents

More on Recursion 1
Re-Introduction . 1
Arrays and Recursion . 3

Sorted Array Using Recursion 3
Binary Search Using Recursion 4

Lists and Recursion . 5

More on Recursion

The code for this lecture is available in this archive1.

Re-Introduction
We previously defined recursion as follows:

a method is recursive if it calls itself.

Applied very strictly, the simplest (and most likely shortest) recursive
method is the following:

// Warning: dangerous function!
void R()
{

R();
}

It is a method (R) that simply … calls itself. Even if this method does not
“do” anything, calling it will most likely make your program crash, since
R will keep calling itself forever: this is actually an example of an infinite
loop, and the basics of the “fork bomb” attack23.

A better definition of recursion would include something about the
method eventually terminating, like the following:

void CountDown(int n)
{

if (n == 0)
{
Console.WriteLine($"{n}: Blast off!");

}
else

1https:/princomp.github.io/code/projects/AdvancedRecursion.zip
2https://en.wikipedia.org/wiki/Fork_bomb
3Except that the fork bomb calls itself twice, and in parallel.

1

https:/princomp.github.io/code/projects/AdvancedRecursion.zip
https://en.wikipedia.org/wiki/Fork_bomb

{
Console.Write($"{n}…");
CountDown(n - 1);

}
}

In that case, if we call e.g., CountDown(10), then would be displayed:

10…9…8…7…6…5…4…3…2…1…0: Blast off!

But note that this method is not always terminating: indeed, calling
CountDown(-1) actually loops forever, since removing 1 to -1 repetitively
will never make it reach 0 (if we forget about overflows for an instant).

A possible way to patch this would be to have two additional method:
one to count “up” to 0, and one that decides which method to call:

void CountUp(int n)
{

if (n == 0)
{
Console.WriteLine($"{n}: Blast off!");

}
else
{
Console.Write($"{n}…");
CountUp(n + 1); // <- Only change.

}
}
void Count(int n)
{

if (n < 0)
CountUp(n);

else
CountDown(n);

}
Count(10);
Count(-10);

As we can see, Count itself is not recursive, but it calls a recursivemethod.

Finally, methods can be mutually recursive: a method MyTurn can call
a YourTurn method that itself calls MyTurn. While neither method are
recursive, they create a recursive situation, as exemplified below:

void MyTurn(int n)
{

if (n < 0)
{
Console.WriteLine("The Game is over.");

2

}
else
{
Console.WriteLine("It's my turn");
n--;
if (n < 0)
{
Console.WriteLine("The Game is over.");

}
else
{
YourTurn(n);

}
}

}
void YourTurn(int n)
{

Console.WriteLine("It's your turn.");
MyTurn(n);

}

Note that determining how many time both methods will be executed
may not be easy: in our example, if MyTurn(4) is called, can you deter-
mine what will be displayed?

Arrays and Recursion
Any structure over which we can iterate can be treated using recursion,
and arrays are no exception. In the following, we will re-implement two
simple methods using recursion: one to decide if an array is sorted, and
one that implements binary search.

Sorted Array Using Recursion

Given an array and a current index, to determine if the array is sorted,
one can:

• Make sure that the array to the left of the current index is sorted,
• Make sure that the value at the current index is less than the value
at the next index,

• Make sure that the array to the right of the current index is sorted.

Note that our definition above is recursive: being sorted is defined using
being sorted.

Assuming the array is sorted up to currentIndex, the following will return
true if the rest of the array is sorted, false otherwise:

3

bool SortedH(int[] aP, int currentIndex)
{

if (aP.Length == currentIndex + 1)
return true;

else if (aP[currentIndex] > aP[currentIndex + 1])
return false;

else
return SortedH(aP, currentIndex + 1);

}

The first test check if we are done (in which case the array is sorted), the
second compare the value at the current index with the one that follows,
and the last one kicks in the reduction by stipulating that if the other two
tests failed, then the array is sorted if the rest of the array is.

Compared to our informal above, we are missing the “making sure the
left of the current index is sorted” bit, unless we start with current index
… 0! Putting it all together, we can define Sorted calling the recursive
SortedH method with the right arguments (and after performing some
checks):

bool Sorted(int[] aP)
{

if (aP == null)
return false;

else
return SortedH(aP, 0);

}

Binary Search Using Recursion

We can perform binary search4 using recursion:

bool BinFindH(int[] aP, int start, int end, int
target)↪

{
int mid = (start + end) / 2;
if (start > end)
{
return false;

}
else
{
if (target == aP[mid])
{
return true;

4https:/princomp.github.io/lectures/collections/search#binary-search

4

https:/princomp.github.io/lectures/collections/search#binary-search

}
else if (target > aP[mid])
{
return BinFindH(aP, mid + 1, end, target);

}
else
{
return BinFindH(aP, start, mid - 1, target);

}
}

}
// Binary search
bool BinFind(int[] aP, int target)
{

return BinFindH(aP, 0, aP.Length - 1, target);
}

Lists and Recursion
Lists are also naturally manipulated by recursive methods. We show, as
an example, two ways of defining a method that construct a string
describing a .NET list.

string DisplayH(
string retString,
List<string> listP,
int indexP

)
{

if (listP.Count == indexP + 1)
{
return retString + listP[indexP] + ".\n";

}
else
{
retString += listP[indexP] + " -> ";
return DisplayH(retString, listP, indexP + 1);

}
}

string Display(List<string> ListP)
{

string retString = "";
return DisplayH(retString, ListP, 0);

}

5

Note that the DisplayH method is a bit cumbersome, as it must carry
around

1. The whole list (listP),
2. The string that is being constructed (retString),
3. An index (indexP).

An alternative way of writing such a method is to

1. shorten the list as we go (using RemoveAt),
2. and to use a reference to the string,

as follows:

void DisplayRef(ref string descP, List<string> listP)
{

if (listP == null || listP.Count == 0)
{
descP += ".\n";

}
else if (listP.Count == 1)
{
descP += listP[0] + ".\n";

}
else
{
descP += listP[0] + " -> ";
listP.RemoveAt(0);
DisplayRef(ref descP, listP);

}
}

But note that the list is actually shortened by the RemoveAt instruction: if
we additionally have to leave the original string unmodified, then a copy
of the list must be created, using e.g.

List<string> listCopy = new List<string>(
operatingSystems

);

6

	More on Recursion
	Re-Introduction
	Arrays and Recursion
	Sorted Array Using Recursion
	Binary Search Using Recursion

	Lists and Recursion

