
Contents

if 1
if Statements . 1

Introduction . 1
Example code with an if statement 1
Syntax and rules for if statements 3

if-else Statements . 3
Syntax and comparison 4

Nested if-else Statements . 5
Using nested if statements 6

if-else-if Statements . 8
If-else-if syntax . 8
Using if-else-if to solve the “floors problem” 9
if-else-if with different conditions 10
if-else-if vs. nested if . 11

if

if Statements
Introduction

• Recall from a previous lecture (Booleans and Comparisons) that de-
cision structures change the flow of code execution based on con-
ditions

• Now that we know how to write conditions in C#, we can write de-
cision structures

• Our first decision structure is the if statement, which executes a block
of code only if a condition is true

Example code with an if statement

Console.WriteLine("Enter your age");
int age = int.Parse(Console.ReadLine());
if (age >= 18)
{

Console.WriteLine("You can vote!");
}
Console.WriteLine("Goodbye");

• After the keyword if is a condition, in parentheses: age >= 18

• On the next line after the if statement, the curly brace begins a
code block. The code in this block is “controlled” by the if state-
ment.

1

• If the condition age >= 18 is true, the code in the block (the Write-
Line statement with the text “You can vote!”) gets executed, then
execution proceeds to the next line (the WriteLine statement that
prints “Goodbye”)

• If the condition age >= 18 is false, the code in the block gets
skipped, and execution proceeds directly to the line that prints
“Goodbye”

• The behavior of this program can be represented by this flowchart:

Determining if a user can vote in the US

Ask for age

Age?

You can vote!

Thanks for using our program.

[Major]

Figure 1: “A flowchart representation of an if statement”

• Example interaction 1:

Enter your age
20
You can vote!
Goodbye

When the user enters “20”, the value 20 is assigned to the age vari-
able, so the condition age >= 18 is true. This means the code inside
the if statement’s block gets executed.

• Example interaction 2:

Enter your age
17
Goodbye

2

When the user enters “17”, the value 17 is assigned to the age vari-
able, so the condition age >= 18 is false, and the if statement’s
code block gets skipped.

Syntax and rules for if statements

• Formally, the syntax for an if statement is this:

if (<condition>)
{

<statements>
}

• The “condition” in parentheses can be any expression that pro-
duces a bool value, including all of the combinations of conditions
we saw in the previous lecture (Booleans and Comparisons). It can
even be a bool variable, since a bool variable “contains” a bool
value.

• Note that there is no semicolon after the if (<condition>). It’s
a kind of “header” for the following block of code, like a method
header.

• The statements in the code block will be executed if the condition
evaluates to true, or skipped if it evaluates to false

• If the code block contains only one statement, the curly braces can
be omitted, producing the following syntax:

if(<condition>)
<statement>

For example, the if statement in our previous example could be
written like this, since there was only one statement in the code
block:

if(age >= 18)
Console.WriteLine("You can vote!");

Console.WriteLine("Goodbye");

• Omitting the curly braces is slightly dangerous, though, because
it makes it less obvious which line of code is controlled by the if
statement. It is up to you, the programmer, to remember to indent
the line after the if statement, and then de-indent the line after
that; indentation is just a convention. Curly braces make it easier
to see where the if statement starts and ends.

if-else Statements
Example:

3

if(age >= 18)
{

Console.WriteLine("You can vote!");
}
else
{

Console.WriteLine("You are too young to vote");
}
Console.WriteLine("Goodbye");

• The if-else statement is a decision structure that chooses which
block of code to execute, based on whether a condition is true or
false

• In this example, the condition is age >= 18 again

• The first block of code (underneath the if) will be executed if the
statement is true – the console will display “You can vote!”

• The second block of code, which comes after the keyword else,
will be executed if the statement is false – so if the user’s age is less
than 18, the console will display “You are too young to vote”

• Only one of these blocks of code will be executed; the other will be
skipped

• After executing one of the two code blocks, execution continues
at the next line after the else block, so in either case the console
will next display “Goodbye”

• The behavior of this program can be represented by this flowchart:

Syntax and comparison

• Formally, the syntax for an if-else statement is this:

if (<condition>)
{

<statement block 1>
}
else
{

<statement block 2>
}

• As with the if statement, the condition can be anything that pro-
duces a bool value

• Note that there is no semicolon after the else keyword

4

Determining if a user can vote in the US

Ask for age

Age?

You can vote! You are too young!

Thanks for using our program.

[Major] [Not Major]

Figure 2: “A flowchart representation of an if-else statement”

• If the condition is true, the code in statement block 1 is executed
(this is sometimes called the “if block”), and statement block 2 is
skipped

• If the condition is false, the code in statement block 2 is executed
(this is sometimes called the “else block”), and statement block 1 is
skipped

• This is very similar to an if statement; the difference is what happens
if the condition is false

– With an if statement, the “if block” is executed if the condition
is true, but nothing happens if the condition is false.

– With an if-else statement, the code in the “else block” is ex-
ecuted if the condition is false, so something always happens -
one of the two code blocks will get executed

Nested if-else Statements
• If-else statements are used to change program flow based on a

condition; they represent making a decision

• Sometimes decisions are more complex than a single yes/no ques-
tion: once you know whether a certain condition is true or false,
you then need to ask another question (check another condition)

5

based on the outcome

• For example, we could improve our voting program to ask the user
whether he/she is a US citizen, as well as his/her age. This means
there are two conditions to evaluate, as shown in this flowchart:

Determining if a user can vote in the US

Ask for citizenship and age

Citizen?

Sorry, only citizens can vote

Age?

You can vote! You are too young!

Thanks for using our program.

[US citizen] [Non-US citizen]

[Major] [Not major]

Figure 3: “A flowchart representation of the nested if-else statement”

– First, the program should test whether the user is a citizen. If not,
there is no need to check the user’s age, since he/she cannot
vote anyway

– If the user is a citizen, the program should then test whether the
user is over 18 to determine if he/she is old enough to vote.

Using nested if statements

• An if statement’s code block can contain any kind of statements,
including another if statement

• Putting an if statement inside an if block represents making a se-
quence of decisions - once execution has reached the inside of an
if block, your program “knows” that the if condition is true, so it
can proceed to make the next decision

6

• For the voting example, we can implement the decision structure
from the flowchart above with this code, assuming age is an int
and usCitizen is a bool:

if(usCitizen == true)
{

if(age >= 18)
{

Console.WriteLine("You can vote!");
}
else
{

Console.WriteLine("You are too young to
vote");↪
}

}
else
{

Console.WriteLine("Sorry, only citizens can
vote");↪

}
Console.WriteLine("Goodbye");

– First, the program tests the condition usCitizen == true,
and if it is true, the code in the first “if block” is executed

– Within this if block is another if statement that tests the
condition age >= 18. This represents checking the user’s age
after determining that he/she is a US citizen - execution only
reaches this second if statement if the first one evaluated to
true. So “You can vote” is printed if both usCitizen == true
and age >= 18

– If the condition usCitizen == true is false, the if block is
skipped and the else block is executed instead, so the entire
inner if statement is never executed – the user’s age does
not matter if he/she isn’t a citizen

– Note that the condition usCitizen == true could also be
expressed by just writing the name of the variable usCitizen
(i.e., the if statement would be if(usCitizen)), because
usCitizen is a bool variable. We do not need the equality
comparison operator to test if it is true, because an if
statement already tests whether its condition is true (and a
bool variable by itself is a valid condition)

– Note that indentation helps you match up an else block to
its corresponding if block. The meaning of else depends
on which if statement it goes with: the “outer” else will be
executed if the condition usCitizen == true is false, while
the “inner” else will be executed if the condition age >= 18

7

is false.

• Nested if statements do not need to be the only code in the if
block; you can still write other statements before or after the nested
if

• For example, we could change our voting program so that it only
asks for the user’s age if he/she is a citizen:

if(usCitizen == true)
{

Console.WriteLine("Enter your age");
int age = int.Parse(Console.ReadLine());
if(age >= 18)
{

Console.WriteLine("You can vote!");
}
else
{

Console.WriteLine("You are too young to
vote");↪
}

}
else
{

Console.WriteLine("Sorry, only citizens can
vote");↪

}
Console.WriteLine("Goodbye");

if-else-if Statements
• Sometimes your program needs to test multiple conditions at once,

and take different actions depending on which one is true
• Example: We want to write a program that tells the user which floor

a ClassRoom object is on, based on its room number
– If the room number is between 100 and 200 it is on the first floor;

if it is between 200 and 300 it is on the second floor; if it is greater
than 300 it is on the third floor

• There are 3 ranges of numbers to test, and 3 possible results, so we
cannot do it with a single if-else statement

If-else-if syntax

• An if-else-if statement looks like this:

8

if(<condition 1>)
{

<statement block 1>
}
else if(<condition 2>)
{

<statement block 2>
}
else if(<condition 3>)
{

<statement block 3>
}
else
{

<statement block 4>
}

• Unlike an if statement, there are multiple conditions

• They are evaluated in order, top to bottom

• Just like with if-else, exactly one block of code will get executed

• If condition 1 is true, statement block 1 is executed, and everything
else is skipped

• If condition 1 is false, statement block 1 is skipped, and execution
proceeds to the first else if line; condition 2 is then evaluated

• If condition 2 is true, statement block 2 is executed, and everything
else is skipped

– Thus, statement block 2 is only executed if condition 1 is false
and condition 2 is true

• Same process repeats for condition 3: If condition 2 is false, con-
dition 3 is evaluated, and statement block 3 is either executed or
skipped

• If all the conditions are false, the final else block (statement block
4) is executed

Using if-else-if to solve the “floors problem”

• Assuming myRoom is a ClassRoomobject, this code will display which
floor it is on:

if(myRoom.GetNumber() >= 300)
{

Console.WriteLine("Third floor");

9

}
else if(myRoom.GetNumber() >= 200)
{

Console.WriteLine("Second floor");
}
else if(myRoom.GetNumber() >= 100)
{

Console.WriteLine("First floor");
}
else
{

Console.WriteLine("Invalid room number");
}

• If the room number 300 or greater (e.g. 365), the first “if” block is
executed, and the rest are skipped. The program prints “Third floor”

• If the room number is less than 300, the program continues to the
line else if(myRoom.GetNumber() >= 200) and evaluates the
condition

• If myRoom.GetNumber() >= 200 is true, it means the room number
is between 200 and 299, and the program will print “Second floor.”
Even though the condition only tests whether the room number is
>= 200, this condition is only evaluated if the first one was false, so
we know the room number must be < 300.

• If the second condition is false, the program continues to the
line else if(myRoom.GetNumber() >= 100), evaluates the
condition, and prints “First floor” if it is true.

• Again, the condition myRoom.GetNumber() >= 100 is only evalu-
ated if the first two conditions have already been tested and turned
out false, so we know the room number is less than 300 and less than
200.

• In the final else block, the program prints “Invalid room number”
because this block is only executed if the room number is less than
100 (all three conditions were false).

if-else-if with different conditions

• We often use if-else-if statements to test the same variable multiple
times, but there is no requirement for the conditions to use the same
variable

• An if-else-if statement can use several different variables, and its
conditions can be completely unrelated, like this:

10

int x;
if(myIntVar > 12)
{

x = 10;
}
else if(myStringVar == "Yes")
{

x = 20;
}
else if(myBoolVar)
{

x = 30;
}
else
{

x = 40;
}

• Note that the order of the else-if statements still matters, because
they are evaluated top-to-bottom. If myIntVar is 15, it does not
matter what values myStringVar or myBoolVar have, because the
first if block (setting x to 10) will get executed.

• Example outcomes of executing this code (which value x is as-
signed) based on the values of myIntVar, myStringVar, and
myBoolVar:

myIntVar myStringVar myBoolVar x

12 “Yes” true 20
15 “Yes” false 10
-15 “yes” true 30
10 “yes” false 40

if-else-if vs. nested if

• Sometimes a nested if statement can be rewritten as an
if-else-if statement

• This reduces the amount of indentation in your code, which makes
it easier to read

• To convert a nested if statement to if-else-if, you’ll need to
combine the conditions of the “outer” and “inner” if statements,
using the logical operators

• A nested if statement inside an if block is testing whether the

11

outer if’s condition is true and its own condition is true, so com-
bine them with the && operator

• The else block of the inner if statement can be rewritten as an
else ifby combining the outer if’s condition with the opposite of
the inner if’s condition, since “else” means “the condition is false.”
We need to explicitly write down the “false condition” that is nor-
mally implied by else.

• For example, we can rewrite this nested if statement:

if(usCitizen == true)
{

if(age >= 18)
{

Console.WriteLine("You can vote!");
}
else
{

Console.WriteLine("You are too young to
vote");↪
}

}
else
{

Console.WriteLine("Sorry, only citizens can
vote");↪

}

as this if-else-if statement:

if(usCitizen == true && age >= 18)
{

Console.WriteLine("You can vote!");
}
else if(usCitizen == true && age < 18)
{

Console.WriteLine("You are too young to vote");
}
else
{

Console.WriteLine("Sorry, only citizens can
vote");↪

}

• Note that the else from the inner if statement becomes
else if(usCitizen == true && age < 18) because we
combined the outer if condition (usCitizen == true) with the
opposite of the inner if condition (age >= 18).

12

• Not all nested if statements can be rewritten this way. If there is
additional code in a block, other than the nested if statement, it
is harder to convert it to an if-else-if

• For example, in this nested if statement:

if(usCitizen == true)
{

Console.WriteLine("Enter your age");
int age = int.Parse(Console.ReadLine());
if(age >= 18)
{

Console.WriteLine("You can vote!");
}
else
{

Console.WriteLine("You are too young to
vote");↪
}

}
else
{

Console.WriteLine("Sorry, only citizens can
vote");↪

}
Console.WriteLine("Goodbye");

the code that asks for the user’s age executes after the outer
if condition is determined to be true, but before the in-
ner if condition is tested. There would be nowhere to put
this code if we tried to convert it to an if-else-if statement,
since both conditions must be tested at the same time (in
if(usCitizen == true && age >= 18)).

• On the other hand, any if-else-if statement can be rewritten as a
nested if statement

• To convert an if-else-if statement to a nested if statement, rewrite
each else if as an else block with a nested if statement inside
it – like you’re splitting the “if” from the “else”

• This results in a lot of indenting if there are many else if lines, since
each one becomes another nested if inside an else block

• For example, the “floors problem” could be rewritten like this:

if(myRoom.GetNumber() >= 300)
{

Console.WriteLine("Third floor");
}

13

else
{

if(myRoom.GetNumber() >= 200)
{

Console.WriteLine("Second floor");
}
else
{

if(myRoom.GetNumber() >= 100)
{

Console.WriteLine("First floor");
}
else
{

Console.WriteLine("Invalid room number");
}

}
}

14

	if
	if Statements
	Introduction
	Example code with an if statement
	Syntax and rules for if statements

	if-else Statements
	Syntax and comparison

	Nested if-else Statements
	Using nested if statements

	if-else-if Statements
	If-else-if syntax
	Using if-else-if to solve the “floors problem”
	if-else-if with different conditions
	if-else-if vs. nested if

