
Contents

The List collections 1
Introduction . 1
Syntax . 1

Creation . 1
Adding Elements . 1
Accessing Elements . 2
Removing Elements . 2

The List collections

Introduction
The List class serves a similar purpose than arrays, but with a few no-
table differences:

• Lists do not need to have a number of elements fixed ahead of
time,

• Lists automatically expand when elements are added,
• Lists automatically shrink when elements are removed,
• Lists require to have the using System.Collections.Generic;

statement at the beginning of the file,
• Lists have many built-in methods.

Syntax
Creation

The syntax to create an empty list of string named nameList and a list
of int named valueList containing 1, 2 and 3 is:

List<string> nameList = new List<string>();
List<int> valueList = new List<int>() { 1, 2, 3 };

Adding Elements

Adding an element to the list is done using the Add method, and count-
ing the number of elements is done using the Count property:

Console.WriteLine("nameList has " + nameList.Count + "
element.");↪

nameList.Add("Bob");
Console.WriteLine("nameList has " + nameList.Count + "

element.");↪

1

nameList.Add("Sandrine");
Console.WriteLine("nameList has " + nameList.Count + "

elements.");↪

Note that we did not need to resize the nameList manually: its size went
from 0 to 1 after we added “Bob”, and from 1 to 2 after we added “San-
drine”.

Accessing Elements

Using the [] operator Accessing an element can be done using the
same operator as with arrays (the [] operator):

Console.Write(nameList[0]);

will display “Bob”. Note that this syntax can be used to change the value
of an element that already exist. For example,

nameList[0] = "Robert";

would replace the first value in the list (“Bob”) with “Robert”.

Note that while accessing or replacing an element using the [] operator
inside a list is fine, you cannot add new elements to the list using this
syntax. For example,

nameList[2] = "Sandrine";

would raise an exception since there is no third element to our list.

Using foreach Another way of accessing the elements in a list is to use
foreach loops:

foreach (string name in nameList)
{

Console.WriteLine(name);
}

Removing Elements

An element can be removed from the list using the RemoveAt method.
If nameList contains “Robert, Sandrine”, then after the following state-
ment,

nameList.RemoveAt(0);

it would only contain “Sandrine” and its size would be 1. That is, the first
element would be deleted and the list would shrink.

Another way of removing an element is to use the Remove method. Sup-
pose we have the following list:

2

List<int> valueList = new List<int>() {-1, 0, 1, 2, 3, 2,
5 };↪

then using

valueList.Remove(1);

would remove “1” from the list, and the list would become -1, 0, 2, 3, 2, 5.

Observe that Remove returns a bool, so that for instance the following

if(valueList.Remove(0)){
Console.WriteLine("0 was removed.");

}

would not only remove 0 from the list, but also display “0 was removed”.

Finally, if the value is present multiple times in the list, then only its first
occurrence is removed. For example, if the list is -1, 2, 3, 2, 5, then after
executing

valueList.Remove(2);

it would become -1, 3, 2, 5.

3

	The List collections
	Introduction
	Syntax
	Creation
	Adding Elements
	Accessing Elements
	Removing Elements

