Contents

Arrays of Objects 1
Array of Objects Froma CustomClass 1
Arrays Of AIrays o o e e 2

Rectangular Multi-Dimensional Array 2
Jagged Array . . . Lo e e 3
Arrays of Objects

An array can contain more than simple datatypes: it can contains ob-
ject. It can be objects from a custom class, or even ... arrays, which are
themselves objects!

Array of Objects From a Custom Class

In the following example, we will ask the user how many Item objects
(the details of the implementation does not matter, but can be inspired
by this exomple‘) they want to create, then fill an array with Item objects
initialized from user input:

Console.WriteLine("How many items would you like to
~ stock?");
Item[] items = new Item[int.Parse(Console.ReadLine())];

int 1 = 0;
while(i1 < items.Length)
{

Console.WriteLine($"Enter description of item

< {"l.+1}:");
string description = Console.ReadLine();
Console.WriteLine($"Enter price of item {i+1}:");
decimal price = decimal.Parse(Console.ReadLine());
items[i1] = new Item(description, price);
1++]

}

Observe that, since we do not perform any user-input validation, we can
simply use the result of int.Parse() as the size declarator for the 1tems
array - no size variable is needed at all.

We can also use while loops to search through arrays for a particular
value. For example, this code will find and display the lowest-priced item
in the array items, which was initialized by user input:

! https:/princomp.github.io/lectures/flow/control_flow_and_classes#setters-with-input-
validation

https:/princomp.github.io/lectures/flow/control_flow_and_classes#setters-with-input-validation
https:/princomp.github.io/lectures/flow/control_flow_and_classes#setters-with-input-validation

Item lowestItem = items[0];

int 1 = 1;
while(1 < items.Length)
{

if(items[1].GetPrice() < lowestItem.GetPrice())

{
}

i++;

lowestItem = items[i];

}
Console.WriteLine($"The lowest-priced item 1is
o {lowestItem}");

Note that the lowestItem variable needs to be initialized to refer to an
Item object before we can call the GetPrice() method on it; we can-
not call GetPrice() if lowestItemis null. We could try to create an
Item object with the “highest possible” price, but a simpler approach is
o initialize LowestItem with items[0]. Aslong as the array has at least
one element, 0 is a valid index, and the first item in the array can be our
first "guess” at the lowest-priced item.

Arrays of Arrays

An array of arrays is called a multi-dimensional array. A multi-dimnensional
array can be rectangular (it then represents an n-dimensional block of
memory) or jagged (in that case, it is an array of arrays).

Rectangular Multi-Dimensional Array

Also called 2-dimensional arrays, their syntax is very close to 1-
dimensional arrays:

int[,] matrix = new int[2, 3];

where 2 is the number of rows, and 3 is the number of columns. They can
be accessed with matrix.GetLength(0) and matrix.GetLength(1)
respectively.

Assignment is as for 1-dimensional arrays, starting at O:

matrix[0, 0]
matrix[0, 1]
matrix[0, 2]
matrix[1, 0] =
matrix[1, 1] =
matrix[1, 2]

This will produce a matrix as follows:

)

Lo
OoOuUlhk WN P~

Othcol. 1stcol. 2nd col.

Oth row 1 2 3
1st row 4 5 6

We could also have used a shortened notation to declare this 2-
dimensional array, as follows:

int[,] matrix = new int[,]
{
{ 1 J 2 J 3} J
{4,5,6}
s
or even simply
int[,] matrix = {{1,2,3},{4,5,6}};
To display such an array, nested loops are needed:

for (int row = 0; row < matrix.GetLength(0); row++)
{
for (int col = 0; col < matrix.GetLength(1); col++)
Console.Write(matrix[row, col] + " ");
Console.WriteLine();

Jagged Array

A jagged array is an array of arrays. The difference with rectangular ar-
rays is that the arrays stored can be of varying size.

The syntax is straightforward once understood that jagged arrays are ex-
actly arrays of arrays:

int[][] jaggedArray = new int[3][];

jaggedArray[0] = new int[3] { 1, 2, 3 };
jaggedArray[1] = new int[2] { 4, 5 };
jaggedArray[2] = new int[5] { 6, 7, 8, 9, 10 };

for (int row = 0; row < jaggedArray.Length; row++)
{
Console.Write("The row #" + row + " contain: ");
for (
int arrayCell = 0;
arrayCell < jaggedArray[row].Length;
arrayCell++

)

{
Console.Write(jaggedArray[row][arrayCell] + " ");

}

Console.WriteLine("");

}

In this example, it should be clear that jaggedArray[row] is itself an
array, and hence that we can use e.g., jaggedArray[row].Length or
jaggedArray[row][arrayCelll].

	Arrays of Objects
	Array of Objects From a Custom Class
	Arrays of Arrays
	Rectangular Multi-Dimensional Array
	Jagged Array

