
Contents

Simple Loops and Length 1
Custom Size and Loops . 1

Example . 1
The Length Property . 2
Example . 2

For Loops With Arrays . 3

Simple Loops and Length

Custom Size and Loops
One of the benefits of arrays is that they allow you to specify the number
of their elements at run-time: the size declarator can be a variable, not
just an integer literal. Hence, depending on run-time conditions such as
user input, we can have enough space to store and process any number
of values.

In order to access the elements of whose size is not known until run-time,
we will need to use a loop. If the size of myArray comes from user input, it
wouldn’t be safe to try to access a specific element like myArray[5], be-
cause we cannot guarantee that the array will have at least 6 elements.
Instead, we can write a loop that uses a counter variable to access the
array, and use the loop condition to ensure that the variable does not
exceed the size of the array.

Example

In the following example, we get the number of elements at run-time
from the user, create an array with the appropriate size, and fill the array.

Console.WriteLine("What is the size of the array that you
want?");↪

int size = int.Parse(Console.ReadLine());
int[] customArray = new int[size];

int counter = 0;
while (counter < size)
{

Console.WriteLine($"Enter the {counter + 1}th value");
customArray[counter] = int.Parse(Console.ReadLine());
counter++;

}

Observe that:

1

• If the user enters a negative value or a string that does not corre-
spond to an integer for the size value, our program will crash: we
are not performing any user-input validation here, to keep our ex-
ample compact.

• The loop condition is counter < size because we do not want
the loop to execute when counter is equal to size. The last valid
index in customArray is size - 1.

• We are asking for the {counter +1}th value because we prefer
not to confuse the user by asking for the “0th” value. Note that a
more sophisticated program would replace “th” with “st”, “nd” and
“rd” for the first three values.

The Length Property

Every single-dimensional array has a property called Length that returns
the number of the elements in the array (or size of the array).

To process an array whose size is not fixed at compile-time, we can use
this property to find out the number of elements in the array.

Example

int counter2 = 0;
while (counter2 < customArray.Length)
{

Console.WriteLine($"{counter2}:
{customArray[counter2]}.");↪
counter2++;

}

Observe that this code does not need the variable size.

Note: You cannot use the length property to change the size of the array,
that is, entering

int[] test = new int[10];
test.Length = 9;

would return, at compile time,

Compilation error (line 8, col 3): Property or indexer
'System.Array.Length' cannot be assigned to --it is
read only.

↪
↪

When a field is marked as ‘read only,’ it means the attribute can only
be initialized during the declaration or in the constructor of a class.
We receive this error because the array attribute, ‘Length,’ can not be
changed once the array is already declared. Resizing arrays will be
discussed in the section: Changing the Size.

2

For Loops With Arrays
• Previously, we learned that you can iterate over the elements of an

array using a while loop. We can also process arrays using for
loops, and in many cases they are more concise than the equiva-
lent while loop.

• For example, consider this code that finds the average of all the
elements in an array:

int[] homeworkGrades = {89, 72, 88, 80, 91};
int counter = 0;
int sum = 0;
while(counter < 5)
{

sum += homeworkGrades[counter];
counter++

}
double average = sum / 5.0;

• This can also be written with a for loop:

int sum = 0;
for(int i = 0; i < 5; i++)
{

sum += homeworkGrades[i];
}
double average = sum / 5.0;

• In a for loop that iterates over an array, the counter variable is also
used as the array index

• Since we did not need to use the counter variable outside the body
of the loop, we can declare it in the loop header and limit its scope
to the loop’s body

• Using a for loop to access array elements makes it easy to process
“the whole array” when the size of the array is user-provided:

Console.WriteLine("How many grades are there?");
int numGrades = int.Parse(Console.ReadLine());
int[] homeworkGrades = new int[numGrades];
for(int i = 0; i < numGrades; i++)
{

Console.WriteLine($"Enter grade for homework {i+1}");
homeworkGrades[i] = int.Parse(Console.ReadLine());

}

• You can use the Length property of an array to write a loop condi-
tion, even if you did not store the size of the array in a variable. For

3

example, this code does not need the variable numGrades:

int sum = 0;
for(int i = 0; i < homeworkGrades.Length; i++)
{

sum += homeworkGrades[i];
}
double average = (double) sum / homeworkGrades.Length;

• In general, as long as the loop condition is in the format
i < <arrayName>.Length (or, equivalently, i <= <arrayName>.Length - 1),
the loop will access each element of the array.

4

	Simple Loops and Length
	Custom Size and Loops
	Example
	The Length Property
	Example

	For Loops With Arrays

