
Contents

Default Values and Resizing 1
Default Values . 1
Changing the Size . 2

Example . 2
Partially Filled Arrays . 2

Default Values and Resizing

When created, arrays have a fixed size and are populated with some
default values. We discuss here what those default values are, how an
array can be resized, and how we can avoid resizing an array.

Default Values
If we initialize an array but do not assign any values to its elements, each
element will get the default value for that element’s data type. (These
are the same default values that are assigned to instance variables if we
do not write a constructor, as we learned in “More Advanced Object
Concepts”). In the following example, each element of myArray gets
initialized to 0, the default value for int:

int[] myArray = new int[5];
Console.WriteLine(myArray[2]); // Displays "0"
myArray[1]++;
Console.WriteLine(myArray[1]); // Displays "1"

However, remember that the default value for any object data type
is null, which is an object that does not exist. Attempting to call
a method on a null object will cause a run-time error of the type
System.NullReferenceException;

Rectangle[] shapes = new Rectangle[3];
shapes[0].SetLength(5); // ERROR

Before we can use an array element that should contain an object, we
must instantiate an object and assign it to the array element. For our
array of Rectangle objects, we could either write code like this:

Rectangle[] shapes = new Rectangle[3];
shapes[0] = new Rectangle();
shapes[1] = new Rectangle();
shapes[2] = new Rectangle();

or use the abridged initialization syntax as follows:

1

Rectangle[] shapes = {new Rectangle(), new Rectangle(),
new Rectangle()};↪

Changing the Size
There is a class named Array that can be used to resize an array. Upon
expanding an array, the additional indices will be filled with the default
value of the corresponding type. Shrinking an array will cause the data
in the removed indices (those beyond the new length) to be lost.

Example

Array.Resize(ref myArray, 4); //myArray[3] now contains 0
myArray[3] = 40;
Array.Resize(ref myArray, 2);

In the above example, all data starting at index 2 is lost.

Partially Filled Arrays
To avoid resizing an array, it also possible to declare it larger than it needs
to be, and then to manipulate an accompanying integer variable that
holds the number of elements that are actually stored in the array. The so-
lution to the todo list project1 illustrates this behavior in detail, the general
idea is that you want to let the user store some elements without having
to say ahead of time how many, and without having to resize the array
constantly. The drawback is that the Length property becomes less use-
ful, and that you have to manipulate a custom “accounting” variable to
keep track of the actual number of elements manipulated.

using System;

public class Program
{
public static void Main(string[] args)
{
// We decide that the maximum number of input is 10.
const int MAXSIZE = 10;

int[] inputs = new int[MAXSIZE];

// The following variable will contain the number of
input actually given.↪

int numberOfInputs = 0;

1https:/princomp.github.io/projects/todolist/solution

2

https:/princomp.github.io/projects/todolist/solution

// The following variable will hold the user input.
string uInput;

do
{

Console.WriteLine(
"What is your input #"
+ (numberOfInputs + 1)
+ "? Enter \"done\" when you are done."

);
uInput = Console.ReadLine();
if (uInput != "done")
{
inputs[numberOfInputs] = int.Parse(uInput);
numberOfInputs++; // We increment the number of

items in the list.↪
}
if (numberOfInputs == MAXSIZE)
{
Console.WriteLine(
"You have reached the maximum number of inputs."

);
}

} while (uInput != "done" && numberOfInputs <
MAXSIZE);↪

/*
* When the user enters "done", or if the user reached
the maximum number of inputs, we exit this loop.↪
*/

}
}

3

	Default Values and Resizing
	Default Values
	Changing the Size
	Example

	Partially Filled Arrays

