
Contents

Validating Inputs 1
Discovering TryParse’s Behaviour 1
Validating Inputs . 2
Pushing Further (Optional) . 4

Validating Inputs

This lab serves multiple goals:

• To reinforce your understanding of TryParse statements,
• To help you understand the value returned by TryParse,
• To help you understand the difference between int.TryParse
and double.TryParse,

• To familiarize you with the tools to validate user input,
• To have you validate different kinds of inputs from the user, and
• (Optional) To manipulate user-input validation with classes.

Discovering TryParse’s Behaviour
In your IDE, copy and paste the following:

Console.WriteLine("Enter… something!");
int answer;
bool valid = int.TryParse(Console.ReadLine(), out

answer);↪
Console.WriteLine($"returns: {valid}\nvalue:{answer}");

For each input in the table below:

1. in the returns column write whether the TryParse operation suc-
ceeded (true or false).

2. in the value column write the obtained numeric value after the
TryParse operation.

The first few lines are given as examples; your task is to complete the rest
of the table. You will need to update the program by replacing all the
occurrences of int with double to test if your answers were correct in
the second half of the table.

int.TryParse double.TryParse

Input returns value returns value
"160519" true 160519 true 160519
"9432.0" false 0 true 9432.0
"nope" false 0 false 0

1

int.TryParse double.TryParse

"12,804"
"+5102"
"2+2"

" -322 "
"(72);"
"000"

"78 095"

Question: After completing the table, can you detect a pattern
between “returns” and “value”?

Validating Inputs
For the following problems, perform this series of steps:

1. ask the user for input,
2. check that the input is valid according to the specific problem, and
3. perform the subsequent action.

If the provided input is not valid, request new input from the user until the
user provides valid input. The beginning of the first and second problems
are given to get you started.

1. Write a loop that displays: Enter yes to quit: and then checks
the user’s input. Consider any of these variations tomean yes: “yes”,
“YES”, “y”, “Y”. Once the user enters yes, exit the loop.

Solution (sketch)

Console.WriteLine("Enter yes to quit.");
string answer;
answer = Console.ReadLine();
while (answer != "yes"){

Console.WriteLine("Enter yes to quit.");
answer = Console.ReadLine();

}
Console.WriteLine("You exit the program.");
// Note that this program is not a complete solution:

"YES", "y" or "Y"↪
// does not make the program quit.

2. Ask the user to enter a positive integer between (and including) 2
and 100. Validate the input, compute the sum of integers starting
from 1 up to the integer the user entered, and display that sum.
Here are examples:

2

• if the user enters 5, compute: 1 + 2 + 3 + 4 + 5, then display 15
on the screen

• if the user enters 8, compute: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, then
display 36 on the screen

Solution (sketch)

Console.WriteLine("Enter a number between 2 and
100.");↪

int answer;
answer = int.Parse(Console.ReadLine());
while (answer < 2){

Console.WriteLine("That number is too small!");
Console.WriteLine("Enter a number between 2 and
100.");↪
answer = int.Parse(Console.ReadLine());

}
Console.WriteLine("You exit the program.");
// Note that this program is not a complete solution.
// Values greater than 100 are not rejected,
// And the final calculation is not done.

3. Do the following problem using the decimal type. Ask the user to
enter any numbers which can be positive, negative, or zero. Ignore
all non-numeric inputs using TryParse. Choose an appropriate
sentinel value to enable the user to indicate when they are done.
Compute and display the average of all the numbers that the user
entered. If the user didn’t enter any numbers, display “You did not
enter any numbers”.

Here is an example of execution, where the user input is
u͟ n͟ d͟ e ͟ r͟ l ͟ i ͟ n͟ e͟ d ͟, and hitting “enter” is represented by “↵͟ ”:

Please enter a number, or "Done" to exit:
8 ͟ ↵͟
Please enter a number, or "Done" to exit:
2 ͟ ↵͟
Please enter a number, or "Done" to exit:
H ͟ o ͟ l ͟ d ͟ ͟ o ͟ n ͟ ↵͟
Please enter a number, or "Done" to exit:
- ͟ 5 ͟ ↵͟
Please enter a number, or "Done" to exit:
D ͟ o ͟ n ͟ e ͟ ↵͟

The average of the numbers you entered is
1.66666666667.↪

3

Pushing Further (Optional)
This part is focused on input validation with classes. It requires reading
a lengthy (but not very complicated) class implementation and then,
improving it. It is difficult and is designed to offer an interesting challenge.
However, you should be able to complete such exercises by the end of
the semester without too many difficulties.

Start by downloading the LoanCalculator1 solution which mixes classes
and decision structures. Spend some time studying the implementation
to understand what the program is doing and how it is doing it.

Next edit the Program.cs file of the LoanCalculator solution to add
the following validation features:

1. Users that enter a value other than A, a, H, h, O, or o for the loan
type will be asked again; they will be asked until they give a valid
answer.

2. Users that enter a credit score that is not between 300 and 850, or
one that is not an integer, will be asked again; they will be asked
until they give a valid answer.

3. Users that enter an amount needed or a down payment that is not
a decimal, or is a negative decimal, will be asked again; they will
be asked until they give a valid answer.

4. (Optional) Use the ToLower()2 or ToUpper()3 methods of the char
class to make the program more readable – you will be able to
greatly simplify the if statement that checks the loan type.

5. (Optional, hard)Write amethod for the Loan class that takes a char-
acter as an argument, and returns the string describing the type of
loan designated by that character. Then, use this method in the
ToString method and in the application program instead of do-
ing it manually.

Solution (sketch)

You can find a possible solution in this archive4.

1https:/princomp.github.io/code/projects/LoanCalculator.zip
2https://docs.microsoft.com/en-us/dotnet/api/system.char.tolower?view=netframew

ork-4.7.2
3https://docs.microsoft.com/en-us/dotnet/api/system.char.toupper?view=netframew

ork-4.7.2
4https:/princomp.github.io/code/projects/Solution_LoanCalculator.zip

4

https:/princomp.github.io/code/projects/LoanCalculator.zip
https://docs.microsoft.com/en-us/dotnet/api/system.char.tolower?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.char.tolower?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.char.toupper?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.char.toupper?view=netframework-4.7.2
https:/princomp.github.io/code/projects/Solution_LoanCalculator.zip

	Validating Inputs
	Discovering TryParse’s Behaviour
	Validating Inputs
	Pushing Further (Optional)

