
Contents

Using static keyword 1
Static Classes – Warm-Up . 1

Static Calculator . 1
Static Members in a Non-static Class 2

Using static keyword

This lab serves multiple goals:

• To teach you how a static class differs from a non-static one,
• To illustrate the usefulness of static classes,
• To teach you how a non-static class can manipulate static fields.

Static Classes – Warm-Up
One use case for static classes is creating utility classes (or “helper
classes”) that contain related and frequently-used methods Using a
static class makes those methods easily callable anywhere in the pro-
gram. Some examples of static classes in C# are the Math and Console
classes.

Pay attention to how these classes are used:

• A Console object is never instantiated before use.

• The WriteLine method is called referring to the name of the class
(not an object identifier):

Console.WriteLine("calling a static method");

❓ Question

Using your IDE, check what happens if you do the following:
Console test = new Console();.

Solution:

Indeed, it is not possible to instantiate an object when a class is declared
static. Furthermore, if a class is declared static, all its members (e.g.,
attributes, methods, constructors, etc.) must also be declared static.

Static Calculator

In your IDE create a new project. Then add a new class file called Cal-
culator.cs

1

In Calculator.cs:

1. Declare a static class and name it Calculator.
2. Add 5 public methods to the Calculator class. Each method

takes 2 arguments x and y of type double:
(a) Addmethod that returns the result of x + y.
(b) Subtractmethod that returns the result of x - y.
(c) Multiplymethod that returns the result of x * y.
(d) Dividemethod that returns the result of x / y.
(e) Modulomethod that returns the result of x % y.

After implementing Calculator,

1. Open the file that contains the program’s Mainmethod

2. Paste the following code inside the Mainmethod:

double x = 10d, y = 2d;

Console.WriteLine($"{x} + {y} = {Calculator.Add(x,
y)}");↪

Console.WriteLine($"{x} - {y} =
{Calculator.Subtract(x, y)}");↪

Console.WriteLine($"{x} * {y} =
{Calculator.Multiply(x, y)}");↪

Console.WriteLine($"{x} / {y} = {Calculator.Divide(x,
y)}");↪

Console.WriteLine($"{x} % {y} = {Calculator.Modulo(x,
y)}");↪

Again, notice how

• no instance of Calculator is created before use, and
• each Calculator method is called referring to the name of

the class.

3. Execute the program

• If your implementation of the Calculator class matches the
instructions, you will see meaningful output after executing the
program.

• Otherwise, review the instructions again and retrace your im-
plementation steps to resolve any issues.

Static Members in a Non-static Class
A non-static class can contain both static and non-static class members.

Download, extract, and study this project1 implementation, but do not
1https:/princomp.github.io/code/projects/Student.zip

2

https:/princomp.github.io/code/projects/Student.zip

execute it. After reading through the implementation, answer the ques-
tions below.

1. How many non-static attributes does the Student class have?

2. How many static attributes does the Student class have?

3. How many non-static methods does the Student class have?

4. How many static methods does the Student class have?

5. What is the output of each of the following lines in “Program.cs”:

(a) Console.WriteLine(alice);
(b) Student.DisplayStudentCount(); // first time
(c) Console.WriteLine(bob);
(d) Student.DisplayStudentCount(); // second time

6. If the studentCount attribute was not static, what would be the
output of:

(a) Student.DisplayStudentCount(); // first time
(b) Student.DisplayStudentCount(); // second time

7. When a class contains both static and non-static members,
is it possible to refer to non-static members inside a static
method? For example, if we try to refer to the name attribute
inside DisplayStudentCount, will it work? Why or why not?

Check your answers by creating a matching program in your IDE and
executing it.

To check the last question, in Student.cs, uncomment the following line
and verify its behavior matches your answer:

// Console.WriteLine(name);

3

	Using static keyword
	Static Classes – Warm-Up
	Static Calculator

	Static Members in a Non-static Class

