2024-09-19
Using static keyword
This lab serves multiple goals:
· To teach you how a static class differs from a non-static one,
· To illustrate the usefulness of static classes,
· To teach you how a non-static class can manipulate static fields.
Static Classes – Warm-Up
One use case for static classes is creating utility classes (or “helper classes”) that contain related and frequently-used methods Using a static class makes those methods easily callable anywhere in the program. Some examples of static classes in C# are the Math and Console classes.
Pay attention to how these classes are used:
· A Console object is never instantiated before use.
· The WriteLine method is called referring to the name of the class (not an object identifier):
· Console.WriteLine("calling a static method");
	❓ Question

	Using your IDE, check what happens if you do the following: Console test = new Console();.


Solution:
Indeed, it is not possible to instantiate an object when a class is declared static. Furthermore, if a class is declared static, all its members (e.g., attributes, methods, constructors, etc.) must also be declared static.
Static Calculator
In your IDE create a new project. Then add a new class file called Calculator.cs
In Calculator.cs:
1. Declare a static class and name it Calculator.
1. Add 5 public methods to the Calculator class. Each method takes 2 arguments x and y of type double:
1. Add method that returns the result of x + y.
1. Subtract method that returns the result of x - y.
1. Multiply method that returns the result of x * y.
1. Divide method that returns the result of x / y.
1. Modulo method that returns the result of x % y.
After implementing Calculator,
1. Open the file that contains the program’s Main method
1. Paste the following code inside the Main method:
· double x = 10d, y = 2d;

Console.WriteLine($"{x} + {y} = {Calculator.Add(x, y)}");
Console.WriteLine($"{x} - {y} = {Calculator.Subtract(x, y)}");
Console.WriteLine($"{x} * {y} = {Calculator.Multiply(x, y)}");
Console.WriteLine($"{x} / {y} = {Calculator.Divide(x, y)}");
Console.WriteLine($"{x} % {y} = {Calculator.Modulo(x, y)}");
· Again, notice how
· no instance of Calculator is created before use, and
· each Calculator method is called referring to the name of the class.
· Execute the program
· If your implementation of the Calculator class matches the instructions, you will see meaningful output after executing the program.
· Otherwise, review the instructions again and retrace your implementation steps to resolve any issues.
Static Members in a Non-static Class
A non-static class can contain both static and non-static class members.
Download, extract, and study this project implementation, but do not execute it. After reading through the implementation, answer the questions below.
1. How many non-static attributes does the Student class have?
1. How many static attributes does the Student class have?
1. How many non-static methods does the Student class have?
1. How many static methods does the Student class have?
1. What is the output of each of the following lines in “Program.cs”:
8. Console.WriteLine(alice);
8. Student.DisplayStudentCount(); // first time
8. Console.WriteLine(bob);
8. Student.DisplayStudentCount(); // second time
1. If the studentCount attribute was not static, what would be the output of:
9. Student.DisplayStudentCount(); // first time
9. Student.DisplayStudentCount(); // second time
1. When a class contains both static and non-static members, is it possible to refer to non-static members inside a static method? For example, if we try to refer to the name attribute inside DisplayStudentCount, will it work? Why or why not?
Check your answers by creating a matching program in your IDE and executing it.
To check the last question, in Student.cs, uncomment the following line and verify its behavior matches your answer:
// Console.WriteLine(name);
