
Contents

Rectangle Class 1
Manipulating Two .cs Files at a Time 1
Enriching Program.cs . 2
Editing Rectangle.cs . 3
Enriching Rectangle.cs . 4

Rectangle Class

This lab serves multiple goals:

• To guide you in your first manipulation of a programmer-defined
class,

• To understand how two .cs files can interact in a single solution,
• To help you understand how to create and manipulate objects,
• To briefly discuss naming conventions in classes,
• To encourage you to enrich an existing class with additional meth-
ods.

This last part is challenging; therefore, we provide a possible solution at
the end of the page, but make sure you try to solve it by yourself before-
hand.

Manipulating Two .cs Files at a Time

1. Download the Rectangle project1, extract it, and open it with your
IDE.

2. Note that in the “Solution Explorer”, there are two .cs files listed:
Program.cs and Rectangle.cs:

1https:/princomp.github.io/code/projects/Rectangle.zip

1

https:/princomp.github.io/code/projects/Rectangle.zip

3. In the Solution Explorer, double-click on Rectangle.cs and note
how close it is to what is presented during in the lecture notes2.

4. In the Solution Explorer, double-click on Program.cs and observe
it.

5. Compile and execute the code.

6. Now, do the following:

• Introduce a syntactical error in Program.cs (e.g., remove a ;) and
try to build the solution. What do you observe? Undo the modifica-
tion.

• Introduce a syntactical error in Rectangle.cs (e.g., remove a ;)
and try to build the solution. What do you observe? Undo the mod-
ification.

• Add length = 12; in the Main method of Program.cs and try to
build the solution. What do you observe? Undo the modification.

Enriching Program.cs
Edit Program.cs by adding a few statements at the end of its Main
method. The statements should perform the following:

1. Create a second Rectangle object and set its length and width to
3.

2. Create a third Rectangle object and ask the user to specify its
length and width. Display the area of this rectangle on the screen.

3. Create a fourth Rectangle object without specifying its length or
width and display them on the screen. What do you observe?

2https://princomp.github.io/book.html#writing-our-first-class

2

https://princomp.github.io/book.html#writing-our-first-class

In the last part, youmay notice that the length and thewidth of the newly
created object were assigned default values. To know more about this,
refer to the documentation on default values of C# types3.

Editing Rectangle.cs
Edit Rectangle.cs:

1. Rename every instance of lengthParameter to lengthP in the
SetLengthmethod (i.e., replace both occurrences).

You can use your IDE’s rename feature to perform this operation. If
you are having trouble finding or using it, see the rename guide for
your IDE: Visual Studio4, MonoDevelop5, Rider6

2. Compile and execute your program. What do you observe? What
happens if you change one instance to lengthP while leaving the
other as lengthParameter? Try it out by manually editing one of
these instances and compiling the program. Be sure to change it
back after.

3. Some people use the convention of prefixing instance variables
with _ (the underscore character), m (for “member”), or even m_.
You can always find someone furiously advocating for one particu-
lar convention, but unless someone like an employer gives you spe-
cific guidance, you should pick whichever suits you best. Still, just to
use it at least once, rename every instance of width into m_width
and see how it feels. Compile and execute your program. What
do you observe? Either undo this modification or rename length
into m_length to be consistent.

4. Change the nameof oneof theaccessormethods in Rectangle.cs
without changing it in Program.cs. Compile and execute your
program. What do you observe? Undo your modification.

5. What has this section taught you about variable and method
names within .cs files and across .cs files within the same project?
What about naming is important to the compiler, and what is only
important to the programmer?

3https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/def
ault-values-table

4https://docs.microsoft.com/en-us/visualstudio/ide/reference/rename?view=vs-2019
5https://www.monodevelop.com/documentation/feature-list/refactoring/#rename
6https://www.jetbrains.com/help/rider/Refactorings__Rename.html

3

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/default-values-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/default-values-table
https://docs.microsoft.com/en-us/visualstudio/ide/reference/rename?view=vs-2019
https://www.monodevelop.com/documentation/feature-list/refactoring/#rename
https://www.jetbrains.com/help/rider/Refactorings__Rename.html

Enriching Rectangle.cs
Taking inspiration from the ComputeArea() method, write three new
methods:

1. A method that returns the perimeter of the calling object.
2. A method that doubles the length and the width of the calling ob-

ject.
3. Amethod that swaps the length and the width of the calling object.

For each method, pick a (valid) name, think about the return type and
the parameters, and write the body of the method carefully. After suc-
cessfully compiling your program, call that method in Program.cs and
see if it has the expected behavior.

This is more challenging than the rest of the lab, so if you are unable to
finish this part during the lab session, do not worry, but take the time to
study a possible solution7 to this problem.

7https:/princomp.github.io/code/projects/Enriched_Rectangle.zip

4

https:/princomp.github.io/code/projects/Enriched_Rectangle.zip

	Rectangle Class
	Manipulating Two .cs Files at a Time
	Enriching Program.cs
	Editing Rectangle.cs
	Enriching Rectangle.cs

