2024-09-19
Random class
This lab serves multiple goals:
· To illustrate how programs can generate random numbers,
· To introduce you to using existing libraries,
· (Optional) to understand what a cryptographically secure random number generator is and why it matters.
Generating Random Numbers
The Random class from the C# standard library can be used to generate random numbers in any given range. In this lab, you will practice using the Random class.
Start by reading the corresponding chapter in the lecture notes, then create a new project and practice generating and displaying to the screen different random numbers:
1. Generate any random integer
1. Generate a random integer between -10 and 10 including these boundary values
1. Generate a random double
Note you only need 1 instance of the Random class to generate these numbers.
Solution:
Random rand = new Random(); // Creation of a random number generator.
Console.WriteLine("A random number:" + rand.Next()); // This is any random (int) number.
Console.WriteLine("A random number between -10 and 10:" + (rand.Next(21)-10)); // This number will be between 0 and 20, then we subtract 10 from it.
Console.WriteLine("A random number between -10 and 10:" + rand.Next(-10, 11)); // Alternate solution
Console.WriteLine("A random double:" + rand.NextDouble()); // This is any random (double) number.
Execute the program a few times to make sure the outputs are different each time.
Once you have successfully generated the 3 random numbers described above, add the following enhancements to the program:
1. Generate any random integer 5 times
1. Generate a random integer between -10 and 10 including these boundary values, 10 times
1. Generate a random double, 5 times
Execute the program again, a few times, to make sure these values change on each execution.
Manipulating Two Arrays
This problem combines random number generation with arrays. Using a Random object, write a program that:
1. declares two arrays of int of size 8,
1. initializes the values of the first array with random numbers between and ,
1. initializes the values of the second array with random numbers between and ,
1. displays the contents of the two arrays in a table, and for each index, a letter indicating whether the first array “won” or “lost” a contest with the second array:
· "W" if the value in the first array is greater than the value in the second array
· "T" if they are equal, and
· "L" if it is less
An example execution of this program would display:
0 8 L
5 3 W
3 3 T
1 2 L
3 1 W
9 0 W
9 0 W
1 5 L
In this example, the first array contains “0 5 3 1 3 9 9 1” and the second contains “8 3 3 2 1 0 0 5”.
Pushing Further (Optional)
Cryptographically secure random numbers
Random number generation is only pseudo-random, meaning these are algorithmically generated numbers that approximate a sequence of truly random numbers. Using the default Random class is not recommended for applications that need cryptographically secure random numbers (e.g, to generate suggested passwords).
When an application needs cryptographically secure random numbers, RandomNumberGenerator class should be used instead. It works as follows:
using System;
using System.Security.Cryptography; // include definition!

class Program
{
 static void Main()
 {
 // choose secure (!) random integer
 // between 0 (inclusive) and 100 (exclusive)
 int secureRandom = RandomNumberGenerator.GetInt32(100);

 // display cryptographically secure int
 Console.WriteLine(secureRandom);

 // choose secure (!) random integer
 // between 50 (inclusive) and 500 (exclusive)
 int anotherSecureRandom =
 RandomNumberGenerator.GetInt32(50, 500);

 // display cryptographically secure int
 Console.WriteLine(anotherSecureRandom);
 }
}
You can learn more about secure random numbers by reading through:
· the technical description of RandomNumberGenerator class
· discussion on how to choose which Random generator to use
