
Contents

Precise Rectangle 1
Writing Your Own PreciseRectangle Class 1

Implementation . 1
Pushing Further (Optional) . 3

Precise Rectangle

This lab serves multiple goals:

• Learn to edit an existing program containing a class,
• Implement a change of datatype in the attributes of a class,
• Reinforce basic class manipulation,
• Discover how to add a class to an existing project.

Writing Your Own PreciseRectangle Class
In this exercise, you will create your own class instead of using and ex-
panding one that was written for you. The idea is to take inspiration
from the class you have already encountered (Rectangle) to create
a new class, called PreciseRectangle, that will manipulate rectangles
whose width and length are floating-point values instead of integers (as
in Rectangle).

This should be a fairly straightforward exercise that mostly reinforces what
you have already encountered, but you will be exposed to creating new
classes in your IDE for the first time.

Implementation

To implement your class in your IDE, you are given two methods below:
you can edit the pre-existing project or you can create a newblank class.
It is recommended to pick the one that you feel the most comfortable
with initially, and then you should try the other technique. You will need
to know how to edit existing projects and how to create new ones.

Edit the Pre-Existing Project

1. Re-download the “Rectangle” project1, extract it in a folder, and
open it with your IDE.

2. Within your IDE, re-name the project to “PreciseRectangle”, and re-
name the “Rectangle.cs” file to “PreciseRectangle.cs”

1https:/princomp.github.io/code/projects/Rectangle.zip

1

https:/princomp.github.io/code/projects/Rectangle.zip

It is important that you rename the files within your IDE. If you try
to rename your files, or their folders, outside of the IDE then it will
break your solution. The solution will still be looking for the original
file/folder names, and will not recognize the changed names. If
such an error occurs, restore the previous names and then rename
your files through the IDE as instructed.

3. In the “PreciseRectangle.cs” file, replace class Rectangle with
class PreciseRectangle.

4. Comment out the body of the Mainmethod in “Program.cs”.

5. Your program should compile as it is, but you need to edit
PreciseRectangle.cs to now store the width and the length
attributes as type double, and then you will need to edit the rest
of the class accordingly. (e.g., What should the return type of the
GetWidthmethod be?)

6. Declare and manipulate precise rectangles (with double values
for the width and the length) in the Main method, and make sure
they behave as expected (i.e., Can you compute the area, set at-
tributes, etc.?).

7. Add the missing methods ComputePerimeter, Swap, and
MultiplyRectangle, as described in the Rectangle lab2 but
also below.

Starting From Scratch

1. Create a new project in your IDE, and name it “PreciseRectangle”.

2. In the Solution Explorer, right-click on “PreciseRectangle”, then on
“Add…” and select “Class”. Then, select “Class” in the dialog box,
write “PreciseRectangle.cs” as the name of the file, and click on
“Add”.

3. You should now have two “.cs” files opened and displayed in the
Solution Explorer: “Program.cs” and “PreciseRectangle.cs”.

4. Implement the PreciseRectangle class according to the follow-
ing specifications:

• it should have two attributes, width and length, of type
double

• it should have eight methods:
– two setters and two getters (i.e., one for each attribute),
– a method to compute the area of a precise rectangle,

2https:/princomp.github.io/labs/Rectangle#enriching-rectangle.cs

2

https:/princomp.github.io/labs/Rectangle#enriching-rectangle.cs

– a method named ComputePerimeter to compute the
perimeter of a precise rectangle,

– a method named Swap to swap the length and the width
of a precise rectangle, and

– a method named MultiplyRectangle to multiply the
length and width of a precise rectangle by a factor given
in the argument as an integer.

5. Declare and manipulate rectangles with floating-point (i.e.,
double) values for the width and the length in the Main method,
and make sure they behave as expected (i.e., Can you compute
the area, set attributes, etc.?).

Pushing Further (Optional)
The following is an independent task with the goal of widening your un-
derstanding of this class and preparing you for the next labs. Now that
you know more about naming conventions, have a look at Microsoft’s
naming guidelines3, and particularly at:

• the documentation on general naming conventions4 and
• the documentation on capitalization conventions5.

3https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-
guidelines

4https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/general-
naming-conventions

5https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-
conventions

3

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/general-naming-conventions
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/general-naming-conventions
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions

	Precise Rectangle
	Writing Your Own PreciseRectangle Class
	Implementation

	Pushing Further (Optional)

