
Contents

For Loops 1
From while to for . 1
From for to while . 2
Implementing for Loops . 2
Pushing Further (Optional) . 3

Multiple Initializations and Updates 3
Using continue and break 4

For Loops

This lab serves multiple goals:

• To reinforce your understanding of for loops,
• To train you to convert between loop formats,
• To practice solving simple problems using for loops,
• (Optional) To introduce the keywords break and continue,
• (Optional) To teach you about the “true form” of for loops.

From while to for
Rewrite the following while (or do...while) loops as for loops. This
should “just” be a matter of re-ordering the code, and you should be
able to do it without thinking much about it.

int a = 0;
while (a != 10)
{

Console.WriteLine(a);
a++;

}

int b = 3;
while (b >= -2)
{

Console.WriteLine(b);
b -= 2;

}

int c = 10;
while(c <= 100) {

Console.WriteLine(c);
c += 10;

}

1

int d = 1;
do
{

Console.WriteLine(d);
d *= 2;

} while (d <= 100);

From for to while
Rewrite the following for loops as while loops:

for (int e = 10; e <= 100; e += 10)
{

Console.Write(e + " ");
}

for (double f = 150; f > 2; f/=2)
{

Console.Write(f + " ");
}

for (int h = 0; h > -30; h -= 1)
{

Console.Write(h + " ");
}

Implementing for Loops
This exercise is to practice for loops.

Write a program that asks the user to enter a positive integer, and then
uses a for loop to compute the sum of all the integers between 1 and
the integer given by the user. For instance, if the user enters 5, your pro-
gram should display 15 on the screen (i.e., 1 + 2 + 3 + 4 + 5 = 15).
You are asked to implement user-input validation later on in this exercise,
so you can assume for now that users will always provide numbers.

Then, answer the following questions:

1. Without executing your program, can you tell what will happen if
the user enters a negative value?

2. Do you think you could have written the same program using a
while loop?

3. How would you change the program to make it compute the prod-
uct instead of the sum (i.e., for 5, 1 × 2 × 3 × 4 × 5 = 120)?

4. How would you change the program to make it display on the
screen the divisors of the integer entered? Examples:

2

• divisors of 5 are: 1, 5
• divisors of 10 are: 1, 2, 5, 10?

You can modify your program to check your answers to the previous
questions. Once you are done, modify your original program in these
two respects:

1. Once the result of the computation is displayed on the screen, ask
the user if they want to compute the sum using another integer or
quit and act accordingly.

2. Add some input validation: floating-point values, non-numeric
strings, and negative values should not be allowed (i.e., your
program should ask for another value).

Pushing Further (Optional)
Multiple Initializations and Updates

This section is about two modifications of for loops that are sometimes
considered bad design; used poorly, they can make the code harder to
read and debug, and sometimes make it hard to follow the flow of con-
trol of your program. They are introduced because you may see them
in the future, but except for rare cases, should be avoided in your own
code. The exact structure of for loops is actually more complex than
discussed in class. It is

for(<initializations>; <condition>; <updates>)
{

<statement block>
}

That is, there can be more than one initialization assuming the variables
all have the same datatype and more than one update. This means
there are legal statements like:

for(int z = 0, y = 10; z < y ; z++)
{

Console.WriteLine($"{z} + {y} = {z+y}");
}

or

for (int x = 0, y = 12 ; x != y; x++, y--)
Console.WriteLine($"The difference between {x} and
{y} is {x - y}");↪

Also, the initialization and update condition are actually optional; we
could have

3

int w = 0;
for (; w < 5; w++)
{

Console.WriteLine(w);
}

and

for(int r = 10; r > 0;)
{

Console.WriteLine(r--);
}

Try to rewrite the four for loops just given as “ordinary” for loops with
exactly one initialization and one update in the header of the for loop.

Using continue and break

Programmers can use two keywords in loops that modify the control flow;
they are continue and break. They can make the loop more confusing
to read, but they can sometimes be useful for reducing the number of
nested if statements in a complex loop. Try executing the following
code to see what these statements do.

for (int i = 1; i <= 5; i++)
{

if (i == 3) continue;
Console.Write(i + " ");

}

for (int i = 1; i <= 5; i++)
{

if (i == 3) break;
Console.Write(i + " ");

}

You can also use break and continue in while loops. Try to rewrite the
previous two for loops as while loops. There is a trick tomake the while
loop using continue work properly; can you spot it?

4

	For Loops
	From while to for
	From for to while
	Implementing for Loops
	Pushing Further (Optional)
	Multiple Initializations and Updates
	Using continue and break

