Practice Final (with solutions)

2024-09-19

Contents

Problem 0 (Warm-up) 1
Problem 1 3
Problem 2 5
Problem 3 7
Problem 4 8
Problem 5 (Deceptively hard) 9
Problem 6 10
Problem 7 11

The final exam will be a closed-book paper exam without a calculator.
Exam questions will be similar in type to those found here, but fewer in
number. While this practice exam is a good study guide, we highly rec-
ommend being familiar with all the material (including but not limited to
your previous exams, labs, projects, quizzes and homework) as well.

Problem 0 (Warm-up)

1. What is the escape sequence for a new line?
Solution
\n

2. What type is the result of 8 * 12M?
Solution
decimal

3. What is the return type of a constructor?
Solution

10.

1.

12

13.

14,

There isn't one.

. What operator would you use to see if int a and int b are equal?

Solution

. List 4 datatypes.

Solution
string, int, byte, decimal, double, float, char, bool, long,
any user-defined type (class), etc.

. List 4 reserved words (keywords).

Solution

new, static, if, else, switch, break, any datatype (other than
user-defined), etc. Anything that was dark green on any of the
slides.

. What is the difference between a variable and a constant?

Solution
variables can have their values changed while constants are set
exactly once.

. Write a statement that declares a constant of type int named

DaysInWeek and sets its value to 7.
Solution
const int DaysInWeek =7;

. Inan exam class, if | want to keep track of the total number of exams

should the attribute be static or non-static?

Solution

static

What operator is used to find out the remainder from division?
Solution

modulo (%)

Write a condition that evaluates o true if an int length is between
4 and 16, both inclusive.

Solution

(length>=4 && length<=16)

How many fimes would a forloop with thisheaderrun? for(int i1=5;i1<12; i++)

Solution
7 fimes.
Write a statement or statements that creates an int array of size 50
with each index containing that index as its value. (.e.0at [0], 13
at [13],49 at [49], etc.).
Solution
int[] numbers = new int[50];
for(int i= 0; i<numbers.Length;i++)
{
numbers[i]=1;
}
Write a statement or statements to create a random number gen-
erator called examRand and use it to generate a random number

between 40 and 57 (inclusive).
Solution

Random examRand = new Random();
examRand.Next(40,58);

Problem 1

Consider the code below:
class VirtualPet{

private string name = "Blank"; // Name of the
= pet.

private decimal hungerLevel = 1m; // Level of

» hunger, with 1 being full, in percent.

private decimal happinessLevel = 1im; // Level of

» happiness, in percent

public void SetName(string nameP)

{
}

name = nameP;

1. Write a statement to instantiate a VirtualPet object called
firstPet
Solution
VirtualPet firstPet = new VirtualPet();

Review classes and objects if you cannot do this. It should be
straightforward.

2. Write a getter for the name attribute.

Solution
Review classes and objects if you cannot do this. It should be
straightforward.

3. Write a statement that would display to the screen the name of
the firstPet object you created previously. What would be dis-
played?

Solution
Make sure you call the GetName method. It should return the default
name from our VirtualPet class (what is that?).

4, Write a setter for the hungerLevel attribute that takes one decimal.
The argument should be assigned to the hungerLevel attribute
only if it is between 0 and 1 (both included), otherwise the attribute
should get the value 0.

Solutfion
public void SetHunger(decimal level)

{
hungerLevel=(level>=0m && level<=1m)?level:0m;
}
Note that while we use the conditional operator here, you can re-
place that with an if-else.
5. Draw the UML diagram for the VirtualPet class, including the
methods you just added
Solution

o
| **VirtualPet** |
|

o -

| - name : string |
| - hungerLevel : decimal |
| - happinessLevel : decimal |

v =

| + SetName(nameP : string) : |
| + GetName() : string |
| + SetHunger(level : decimal) |

S

6. Write a constructor that takes 3 arguments (string, decimal,
decimal) for the VirtualPet class. Your constructor should be
such that if one of the decimal arguments is not between 0 and 1
(both included), then O gets assigned to both decimal attributes.
Solution

public VirtualPet(string nameP, decimal hunger,
< decimal happy)
{
name = nameP;
if(hunger>=0m && hunger<=1m && happy>=0m &&
< happy<=1m){
hungerLevel=hunger;
happinessLevel=happy;
}
else{
hungerLevel=0m;
happinessLevel=0m;

}
7. Your earlier statement that created the firstPet object will no longer
compile after you add the constructor. Why is this the case?
Solution

Because the default constructor was replaced with the new con-
structor. Since you are providing your own constructor, C# doesn’t
provide the default, no-args constructor anymore.

8. Write a statement that would create a new VirtualPet object
called secondPet using the constructor you just added (the argu-
ment values are up to you).

Solution
"' VirtualPet secondPet = new VirtualPet("Rover”, 0.8m, 0.5m);

9. Write a ToString method for the VirtualPet class. It should dis-
play the name, hungerLevel, and happinessLevel. (Bonus) Dis-
play hungerLevel and happinessLevel graphically: for instance,
if hungerLevelis at 4.5, display “Hunger: XXXX". You may freely use
symbols as if they were normal letters.

Solution
public override string ToString(){
string returnable= "Name: "+name+ ", Hunger: ";
for(int 1=10; 1>0; 1--){
returnable+=(i>(hungerLevell0))? "" : "X";
}
returnable+= ", Happiness: ";
for(int j=10; j>0; j--){
returnable+=(j>(happinessLevell0))? "" : "X";
}
return returnable;
}

Note that while we use the conditional operator here, you can re-
place that with an if-else.

10. Write a statement that would use the ToString method from the
VirtualPet class you just added to display information about the
secondPet object.

Solution

Console.WriteLine(secondPet);

This statement will implicitely calls the ToString method. It is actu-
ally equivalentto Console.WriteLine(secondPet.ToString());.

Problem 2

This question will have you partially design, implement and use class to
represent hamburgers. A Burger has a name, a price, a Boolean for dairy,
and a type (typically beef, pork, chicken, veggie).

1. Draw the UML diagram for the Burger class, assuming it contains the
listed attributes, a getter for the name attribute and a setter for the
price attribute. Do not include any other methods.

Solution

Assume name is string, price is decimal, and type is string. Otherwise
look at the UML from question 1 for an example.

. Write a getter for the name attribute.

Solution

Review classes and objects if you cannot do this. It should be
straightforward.

. Write a setter for the price attribute.

Solution

Review classes and objects if you cannot do this. It should be
straightforward.

. Write a constructor that takes 4 arguments and sets the value of the
attributes to be the value of the arguments.

Solution

public Burger(string nameP, decimal priceP, bool dairyP; string typeP)

. Write an additional constructor that takes a name, a dairy, and a
type. The price should then be set according to the following table.
If the value for type is not in the table, price should be set to -99.99.
Solution
public Burger(string nameP, bool dairyP; string typeP)
. Write a static method Promotion that takes as an argument a price
and returns a value 75% of the argument.
Solution

public static decimal Promotion (decimal value)

{

return(value@.75m);

Iy
. Write a ToString method. The string returned should contain the
values of all attributes.
Solution
Easier version of ToString from Problem 1. Remember to use key-
word override.
. Write a statement/statements that:

o Displays the result of passing 12.84 to Promotion.

¢ Instantiates a Burger object named OldBeefy with the values "Old
Beefy”, 1.99, true, and “beef”.

e Changes the price of OldBeefy 1o 2.29.

¢ Displays the name (and only the name) of OldBeefy.

¢ Store the value returned by calling the ToString method with Old-
Beefy in a variable.

Solution

// Displays the result of passing 12.84 to Promotion.

Console.WriteLine(Burger.Promotion (12.84m));

// The answer is 9.63m

{

name=nameP;

1

// Instantiates a Burger object named 0ldBeefy with
- the values "0ld Beefy", 1.99, true, and "beef".
Burger 0ldBeefy = new Burger("0Old Beefy", 1.99m,

< true, "beef");

// Changes the price of 0ldBeefy to 2.29.
OldBeefy.SetPrice(2.29m);

// Displays the name (and only the name) of OldBeefy.
Console.WriteLine(0ldBeefy.GetName());

// Store the value returned by calling the ToString

« method with 0ldBeefy in a variable.
string holder = 0ldBeefy.ToString();

Problem 3

Complete the table based on the code.

X y z Displays
-1 ‘e’ 18.2M
-1 ‘a’ -2
0 ‘c’ 4.6M
1 d’ 2
-1 b’ 115
1 d’ -33.7M
0 ‘a’ 0
1 ‘c’ 13
5
int x;
char y;
decimal z;

// x, y, and z are given legal values

if(x<0 & y == 'a'){
Console.Write("1");

}

else if(z%2==0){
Console.Write("2");

}

else if(y=="c' || y=='d"){
Console.Write("3");

}
else if(x!=0 && z!=0){
Console.Write("4");

}
elseq{

Console.Write("5");
}
Solution
X y z Displays
-1 ‘e’ 18.2M 4
-1 ‘a’ -2 1
0 ‘c’ 4.6M 3
1 d’ 2 2
-1 ‘o’ 115 4
1 ‘d’ -33.7M 3
0 ‘a’ 0 2
1 ‘c’ 13 3
0 el 1 5

Any set of inputs that produce 5 are fine for the last row. This should in-
clude 0 for x, anything other than *a’, ‘c’, or ‘d’ for y, and anything odd
or with a decimal portion for z.

Problem 4

Given two int arrays of equal length, write a code segment that com-
pares the values at each index to see if they match. Return the total
number of matches.

Solution

//given int [] A and int [] B of some length
int matches=0;
for (int 1=0; i<A.Length; i++)
{
matches+=(A[1]==B[1])?1:0;
}

Console.WriteLine(matches);

//Note that while I use the conditional operator here,
» you can replace that with an if-else

//i1f version:

int matches=0;
for (int 1=0; i<A.Length; i++)
{

if (A[i]==B[1])

matches++;

}

Console.WriteLine(matches);

Problem 5 (Deceptively hard)

Given two string arrays (array A and array B) of unknown (possibly differ-
ent) lengths, determine if there are any values found in both A and B. If
they exist, display them to the screen. At the end of the program, dis-
play the total number of common values between A and B. If there are
repeating values in either or both arrays, each should only be counted
once.

Solution

string[] C = new string[A.Length];

string temp="";

bool inC=false, inD=false;

int firstBlankC=0, firstBlankD=0, total=0;

for(int 1=0;i<A.Length;i++){
inC=false;
for(int j=0;j<C.Length;j++){
if(ALU]==C[j1){
inC=true;
break;//ends the inner for loop early
}
if(!inC){//same depth as the inner for loop
{
CLfirstBlankC]=A[1];
firstBlankC++;
}

}//close outer for

//Repeat that code, but replace A with B and C with D.
«~ That gets rid
of the duplicates.

for(int 1=0;i<firstBlankC;i++){
for(int j=0;j<firstBlankD;j++){
if(CL1]==D[j1){

Console.WriteLine(C[1]);
total++;
}
}
}

Console.Writeline($"Total values in common: {total}.");
(Bonus): How could Lists be used to make this problem easier?
Solution

//Assuming A and B are lists instead of arrays; you can
~ also just make

new Lists from the arrays

//with the .AddRange() method of the List class

int total=0;

while(A.Count>0){
if(B.Contains(A[0])){
Console.WriteLine(A[0]);
total++;

}

B.RemoveAll(item => item==A[0]);
A.RemoveAll(item => item==A[0]);
}

Console.WriteLine($"The total number of matches 1is
o {total}");

Problem 6

Write a program that declares an int variable called “pin” and asks the
user for their pin. As long as the user enters something that is not a num-
ber, is negative, or greater than 9999, your program should ask again.

(Bonus): Your code should make sure that the pin has exactly 4 digits,
including leading zeros.

Solution

string userInput = "";
int pin = 0, numDigits = 0;
bool valid = false;
do {
Console.WriteLine("Please enter your 4-digit pin.");
userInput = Console.ReadLine();
valid = int.TryParse(userInput, pin);
if (valid) {
valid = (userInput.Length == 4);

10

}
} while (!valid || pin < 0 || pin > 9999);
Console.WriteLine("Pin successfully set!");

Problem 7

1. Write a statement that would create an int array of size 100.

Solution
int myArray = new int[100];

2. Write a series of statements that would ask the user to enter a value
for each cell in the array (no need to perform user-input validation,
but you may if you like).

Solution
for(int 1 =0; i<myArray.Length; i++)
{
Console.WriteLine($"Enter value {i}.");
myArray[i]=int.Parse(Console.ReadLine());
}
3. Write a series of statements that would ask the user to enter a value,
displaying “In your array” if the value is in your array.
Solution
Console.WriteLine("Enter a value to check against
< your array.");
int userValue=int.Parse(Console.ReadLine());
bool inArray=false;
for (int 1 =0; i<myArray.Length;i++){
if(myArray[i1]==userValue){
inArray=true;
}

}
if(inArray){
Console.WriteLine("In your array");
I
4. Write a series of statements that would display the sum of values in
the array.
Solution
int sum=0;
for (int 1 =0; i<myArray.Length;i++){
sum+=myArray[i];

Console.WriteLine($"Sum of array values is {sum}");
5. Write a series of statements that would display the product of all the
non-zero values in the array.
Solution

int product=1;
for(int 1 =0; i<myArray.Length; i++){
if(myArray[i1]!=0)
{
product=myArray[i]
I
I

Console.WriteLine($"Product of non-zero values 1is
< q{product}");
6. Write a series of statements that would display the smallest index of
the greatest value in the array.

Solution
int greatest=0;
gIndex=0;
for(int 1 =0; i<myArray.Length;i++)
{

if(myArray[i]>greatest){
greatest=myArray[i];
gIndex=1;
}
}

Console.WriteLine($"The smallest index of the
~ greatest value is {gIndex}");

	Problem 0 (Warm-up)
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5 (Deceptively hard)
	Problem 6
	Problem 7

