
Practice Final (with solutions)

2024-09-19

Contents

Problem 0 (Warm-up) 1

Problem 1 3

Problem 2 5

Problem 3 7

Problem 4 8

Problem 5 (Deceptively hard) 9

Problem 6 10

Problem 7 11

The final exam will be a closed-book paper exam without a calculator.
Exam questions will be similar in type to those found here, but fewer in
number. While this practice exam is a good study guide, we highly rec-
ommend being familiar with all the material (including but not limited to
your previous exams, labs, projects, quizzes and homework) as well.

Problem 0 (Warm-up)

1. What is the escape sequence for a new line?
Solution
\n

2. What type is the result of 8 * 12M?
Solution
decimal

3. What is the return type of a constructor?
Solution

1

There isn’t one.
4. What operator would you use to see if int a and int b are equal?

Solution
==

5. List 4 datatypes.
Solution
string, int, byte, decimal, double, float, char, bool, long,
any user-defined type (class), etc.

6. List 4 reserved words (keywords).
Solution
new, static, if, else, switch, break, any datatype (other than
user-defined), etc. Anything that was dark green on any of the
slides.

7. What is the difference between a variable and a constant?
Solution
variables can have their values changed while constants are set
exactly once.

8. Write a statement that declares a constant of type int named
DaysInWeek and sets its value to 7.
Solution
const int DaysInWeek =7;

9. In an examclass, if I want to keep track of the total number of exams
should the attribute be static or non-static?
Solution
static

10. What operator is used to find out the remainder from division?
Solution
modulo (%)

11. Write a condition that evaluates to true if an int length is between
4 and 16, both inclusive.
Solution
(length>=4 && length<=16)

12. Howmany timeswoulda for loopwith this header run? for(int i=5;i<12; i++)
Solution
7 times.

13. Write a statement or statements that creates an int array of size 50
with each index containing that index as its value. (i.e. 0 at [0], 13
at [13], 49 at [49], etc.).
Solution
int[] numbers = new int[50];
for(int i= 0; i<numbers.Length;i++)
{

numbers[i]=i;
}

14. Write a statement or statements to create a random number gen-
erator called examRand and use it to generate a random number

2

between 40 and 57 (inclusive).
Solution
Random examRand = new Random();
examRand.Next(40,58);

Problem 1

Consider the code below:

class VirtualPet{
private string name = "Blank"; // Name of the

pet.↪
private decimal hungerLevel = 1m; // Level of

hunger, with 1 being full, in percent.↪
private decimal happinessLevel = 1m; // Level of

happiness, in percent↪

public void SetName(string nameP)
{

name = nameP;
}

}

1. Write a statement to instantiate a VirtualPet object called
firstPet.
Solution
VirtualPet firstPet = new VirtualPet();
Review classes and objects if you cannot do this. It should be
straightforward.

2. Write a getter for the name attribute.
Solution
Review classes and objects if you cannot do this. It should be
straightforward.

3. Write a statement that would display to the screen the name of
the firstPet object you created previously. What would be dis-
played?
Solution
Make sure you call the GetNamemethod. It should return the default
name from our VirtualPet class (what is that?).

4. Write a setter for the hungerLevel attribute that takes one decimal.
The argument should be assigned to the hungerLevel attribute
only if it is between 0 and 1 (both included), otherwise the attribute
should get the value 0.
Solution

public void SetHunger(decimal level)

3

{
hungerLevel=(level>=0m && level<=1m)?level:0m;

}
Note that while we use the conditional operator here, you can re-
place that with an if-else.

5. Draw the UML diagram for the VirtualPet class, including the
methods you just added.
Solution

|===|↪
VirtualPet

--|↪
| - name : string |
| - hungerLevel : decimal |
- happinessLevel : decimal

--|↪
| + SetName(nameP : string) : |
| + GetName() : string |
| + SetHunger(level : decimal) |

|===|↪
6. Write a constructor that takes 3 arguments (string, decimal,

decimal) for the VirtualPet class. Your constructor should be
such that if one of the decimal arguments is not between 0 and 1
(both included), then 0 gets assigned to both decimal attributes.
Solution

public VirtualPet(string nameP, decimal hunger,
decimal happy)↪

{
name = nameP;
if(hunger>=0m && hunger<=1m && happy>=0m &&

happy<=1m){↪
hungerLevel=hunger;
happinessLevel=happy;

}
else{
hungerLevel=0m;
happinessLevel=0m;

}
}

7. Your earlier statement that created the firstPet object will no longer
compile after you add the constructor. Why is this the case?
Solution

4

Because the default constructor was replaced with the new con-
structor. Since you are providing your own constructor, C# doesn’t
provide the default, no-args constructor anymore.

8. Write a statement that would create a new VirtualPet object
called secondPet using the constructor you just added (the argu-
ment values are up to you).
Solution
“‘ VirtualPet secondPet = new VirtualPet(“Rover”, 0.8m, 0.5m);

9. Write a ToString method for the VirtualPet class. It should dis-
play the name, hungerLevel, and happinessLevel. (Bonus) Dis-
play hungerLevel and happinessLevel graphically: for instance,
if hungerLevel is at 4.5, display “Hunger: XXXX”. Youmay freely use
symbols as if they were normal letters.
Solution

public override string ToString(){
string returnable= "Name: "+name+ ", Hunger: ";
for(int i=10; i>0; i--){
returnable+=(i>(hungerLevel10))? "" : "X";

}
returnable+= ", Happiness: ";
for(int j=10; j>0; j--){
returnable+=(j>(happinessLevel10))? "" : "X";

}
return returnable;

}
Note that while we use the conditional operator here, you can re-
place that with an if-else.

10. Write a statement that would use the ToString method from the
VirtualPet class you just added to display information about the
secondPet object.
Solution
Console.WriteLine(secondPet);
This statement will implicitely calls the ToString method. It is actu-
ally equivalent to Console.WriteLine(secondPet.ToString());.

Problem 2

This question will have you partially design, implement and use class to
represent hamburgers. A Burger has a name, a price, a Boolean for dairy,
and a type (typically beef, pork, chicken, veggie).

1. Draw the UML diagram for the Burger class, assuming it contains the
listed attributes, a getter for the name attribute and a setter for the
price attribute. Do not include any other methods.
Solution

5

Assumename is string, price is decimal, and type is string. Otherwise
look at the UML from question 1 for an example.

2. Write a getter for the name attribute.
Solution
Review classes and objects if you cannot do this. It should be
straightforward.

3. Write a setter for the price attribute.
Solution
Review classes and objects if you cannot do this. It should be
straightforward.

4. Write a constructor that takes 4 arguments and sets the value of the
attributes to be the value of the arguments.
Solution
public Burger(string nameP, decimal priceP, bool dairyP; string typeP) { name=nameP; price=priceP; dairy=dairyP; type=typeP; }

5. Write an additional constructor that takes a name, a dairy, and a
type. The price should then be set according to the following table.
If the value for type is not in the table, price should be set to -99.99.
Solution
public Burger(string nameP, bool dairyP; string typeP) { name=nameP; dairy=dairyP; type=typeP; if(dairy) { switch(type){ case "beef": price=1.99m; break; case "pork": price=2.1m; break; case "chicken": price=1.85m; break; case "veggie": price=2.25m; break; default: price=99.99m; break; } } else { switch(type){ case "beef": price=1.79m; break; case "pork": price=2m; break; case "chicken": price=1.6m; break; case "veggie": price=2.1m; break; default: price=99.99m; break; } } }

6. Write a static method Promotion that takes as an argument a price
and returns a value 75% of the argument.
Solution

public static decimal Promotion (decimal value)
{
return(value0.75m);

}
7. Write a ToString method. The string returned should contain the

values of all attributes.
Solution
Easier version of ToString from Problem 1. Remember to use key-
word override.

8. Write a statement/statements that:

• Displays the result of passing 12.84 to Promotion.
• Instantiates a Burger object named OldBeefy with the values “Old
Beefy”, 1.99, true, and “beef”.

• Changes the price of OldBeefy to 2.29.
• Displays the name (and only the name) of OldBeefy.
• Store the value returned by calling the ToString method with Old-
Beefy in a variable.
Solution
// Displays the result of passing 12.84 to Promotion.
Console.WriteLine(Burger.Promotion (12.84m));
// The answer is 9.63m

6

// Instantiates a Burger object named OldBeefy with
the values "Old Beefy", 1.99, true, and "beef".↪

Burger OldBeefy = new Burger("Old Beefy", 1.99m,
true, "beef");↪

// Changes the price of OldBeefy to 2.29.
OldBeefy.SetPrice(2.29m);

// Displays the name (and only the name) of OldBeefy.
Console.WriteLine(OldBeefy.GetName());

// Store the value returned by calling the ToString
method with OldBeefy in a variable.↪

string holder = OldBeefy.ToString();

Problem 3

Complete the table based on the code.

x y z Displays

-1 ‘e’ 18.2M
-1 ‘a’ -2
0 ‘c’ 4.6M
1 ‘d’ 2
-1 ‘b’ 115
1 ‘d’ -33.7M
0 ‘a’ 0
1 ‘c’ 13

5

int x;
char y;
decimal z;

// x, y, and z are given legal values

if(x<0 && y == 'a'){
Console.Write("1");

}
else if(z%2==0){
Console.Write("2");

}
else if(y=='c' || y=='d'){
Console.Write("3");

7

}
else if(x!=0 && z!=0){
Console.Write("4");

}
else{
Console.Write("5");

}

Solution

x y z Displays

-1 ‘e’ 18.2M 4
-1 ‘a’ -2 1
0 ‘c’ 4.6M 3
1 ‘d’ 2 2
-1 ‘b’ 115 4
1 ‘d’ -33.7M 3
0 ‘a’ 0 2
1 ‘c’ 13 3
0 ‘b’ 1 5

Any set of inputs that produce 5 are fine for the last row. This should in-
clude 0 for x, anything other than ‘a’, ‘c’, or ‘d’ for y, and anything odd
or with a decimal portion for z.

Problem 4

Given two int arrays of equal length, write a code segment that com-
pares the values at each index to see if they match. Return the total
number of matches.

Solution

//given int [] A and int [] B of some length
int matches=0;
for (int i=0; i<A.Length; i++)
{
matches+=(A[i]==B[i])?1:0;

}
Console.WriteLine(matches);

//Note that while I use the conditional operator here,
you can replace that with an if-else↪

//if version:

8

int matches=0;
for (int i=0; i<A.Length; i++)
{
if (A[i]==B[i])
matches++;

}
Console.WriteLine(matches);

Problem 5 (Deceptively hard)

Given two string arrays (array A and array B) of unknown (possibly differ-
ent) lengths, determine if there are any values found in both A and B. If
they exist, display them to the screen. At the end of the program, dis-
play the total number of common values between A and B. If there are
repeating values in either or both arrays, each should only be counted
once.

Solution

string[] C = new string[A.Length];
string temp="";
bool inC=false, inD=false;
int firstBlankC=0, firstBlankD=0, total=0;

for(int i=0;i<A.Length;i++){
inC=false;
for(int j=0;j<C.Length;j++){
if(A[i]==C[j]){

inC=true;
break;//ends the inner for loop early

}
if(!inC){//same depth as the inner for loop
{

C[firstBlankC]=A[i];
firstBlankC++;

}
}//close outer for

//Repeat that code, but replace A with B and C with D.
That gets rid↪

of the duplicates.

for(int i=0;i<firstBlankC;i++){
for(int j=0;j<firstBlankD;j++){
if(C[i]==D[j]){

9

Console.WriteLine(C[i]);
total++;

}
}

}
Console.Writeline($"Total values in common: {total}.");

(Bonus): How could Lists be used to make this problem easier?

Solution

//Assuming A and B are lists instead of arrays; you can
also just make↪

new Lists from the arrays
//with the .AddRange() method of the List class

int total=0;
while(A.Count>0){
if(B.Contains(A[0])){
Console.WriteLine(A[0]);
total++;
}
B.RemoveAll(item => item==A[0]);
A.RemoveAll(item => item==A[0]);
}
Console.WriteLine($"The total number of matches is

{total}");↪

Problem 6

Write a program that declares an int variable called “pin” and asks the
user for their pin. As long as the user enters something that is not a num-
ber, is negative, or greater than 9999, your program should ask again.

(Bonus): Your code should make sure that the pin has exactly 4 digits,
including leading zeros.

Solution

string userInput = "";
int pin = 0, numDigits = 0;
bool valid = false;
do {
Console.WriteLine("Please enter your 4-digit pin.");
userInput = Console.ReadLine();
valid = int.TryParse(userInput, pin);
if (valid) {
valid = (userInput.Length == 4);

10

}
} while (!valid || pin < 0 || pin > 9999);
Console.WriteLine("Pin successfully set!");

Problem 7

1. Write a statement that would create an int array of size 100.
Solution

int myArray = new int[100];
2. Write a series of statements that would ask the user to enter a value

for each cell in the array (no need to perform user-input validation,
but you may if you like).
Solution

for(int i =0; i<myArray.Length; i++)
{
Console.WriteLine($"Enter value {i}.");
myArray[i]=int.Parse(Console.ReadLine());

}
3. Write a series of statements that would ask the user to enter a value,

displaying “In your array” if the value is in your array.
Solution

Console.WriteLine("Enter a value to check against
your array.");↪

int userValue=int.Parse(Console.ReadLine());
bool inArray=false;
for (int i =0; i<myArray.Length;i++){
if(myArray[i]==userValue){
inArray=true;

}
}
if(inArray){
Console.WriteLine("In your array");

}
4. Write a series of statements that would display the sum of values in

the array.
Solution

int sum=0;
for (int i =0; i<myArray.Length;i++){
sum+=myArray[i];
}
Console.WriteLine($"Sum of array values is {sum}");

5. Write a series of statements that would display the product of all the
non-zero values in the array.
Solution

11

int product=1;
for(int i =0; i<myArray.Length; i++){
if(myArray[i]!=0)
{
product=myArray[i]

}
}
Console.WriteLine($"Product of non-zero values is
{product}");↪

6. Write a series of statements that would display the smallest index of
the greatest value in the array.
Solution

int greatest=0;
gIndex=0;
for(int i =0; i<myArray.Length;i++)
{
if(myArray[i]>greatest){
greatest=myArray[i];
gIndex=i;

}
}
Console.WriteLine($"The smallest index of the
greatest value is {gIndex}");↪

12

	Problem 0 (Warm-up)
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5 (Deceptively hard)
	Problem 6
	Problem 7

