
Contents

Dev. Guide 1
Resources Organization Overview 1

Folders and Files . 1
Building and Deploying 2
Tools, Briefly . 3
Locating Resources . 4

Editing Resources . 4
Best practices for all forms of content 5
Creating new lectures . 8
Creating new labs . 10
Content Labelling . 10

Styling and Templating . 11
Updating docx template 12
Updating odt template 12

Building locally . 13
Website . 15

Editing the website . 15
Deploying locally the website 17
Updating quartz . 18

Repository Maintenance . 21
Build outputs . 21
Github actions . 22
Creating releases . 22
Maintaining repository feedback 23
Maintaining Instructors / G/UCA rights 25

Dev. Guide

This guide explains how this resource is organized, how it is built and de-
ployed, and how to maintain this resource. It is intended to be compre-
hensive, but should most likely be read only after having read our con-
tributing1 and UCA2 guides.

Resources Organization Overview
Folders and Files

The source code repository3’s main branch is organized as follows:
1https:/princomp.github.io/docs/about/contributing
2https:/princomp.github.io/docs/academic_life/uca_guide#editing-the-resources
3https://github.com/princomp/princomp.github.io

1

https:/princomp.github.io/docs/about/contributing
https:/princomp.github.io/docs/academic_life/uca_guide#editing-the-resources
https://github.com/princomp/princomp.github.io

path description

.github/ github templates and
configuration for github actions

misc/ resources that need to be either
integrated into the resource, or

discarded
source/ source for the material

licence.md license file
readme.md presentation of the repository

The source/ folder contains the following:

path description

code/ code examples (snippets
and projects)

docs/ additional helpful
documentation

fonts/ the fonts (redistributed
with permission) used by

this resource
img/ images, sometimes with

their LaTeX source code
labs/ lab exercises

lectures/ lecture notes
slides/ slides

templates/ templates and filters used
for building this resource

vid/ video files
Makefile makefile used to compile

this resource
index.md website index page
order file used to specify the

order on the website’s
menu and the book

Building and Deploying

The content is built and deployed in two phases:

• Running make all in the source/ folder will create a content/
folder at root level containing:

– one .md file per .md file in the source/ folder (in the same loca-
tion: source/labs/If.md is compiled to content/labs/If.md),

2

resulting from pandoc4’s conversion,
– one .pdf, .odt and .docx file per .md file (with the ex-
ception of the index.md files) in the source/ folder (in
the same location: source/labs/If.md is compiled to
content/labs/If.pdf), resulting from pandoc5’s conversion,

– some files from the img/, slides/ and vid/ folders, copied
selectively (for example, only the .jpeg, .png, .pdf, .svg and
.gif files are copied from the img/ folder),

– the .woff and .woff2 files copied from the fonts/ folders,
– a code/projects/ folder containing, for each Program.cs
file contained in a source/code/projects/x/y, a x.zip
archive containing a C# project including Program.cs along
with some (optional) class file,

– a web-order.ts file, compiled from the source/order file,
that fixes the order used by the website in the menu,

– a book.html, a book.pdf, a book.html and a book.docx file
resulting from pandoc6’s conversion of the .md files contained
in the SOURCE_BOOK’s makefile variable (containing all the .md
files in the source/docs/and source/lectures/, in the order
fixed by the order file).

• Then, using the files in the generated content/ folder, a
website is built using quartz7 and deployed to h t t p s : / / p r
i ncomp .g i t hub . i o /. This is achieved mainly thanks to the
.github/workflows/build_and_deploy.yaml file and github’s
actions8.

Tools, Briefly

This resource is mainly developed and powered using

• git9

• pandoc10

• make11

• python12

• quartz13,
4https://pandoc.org/
5https://pandoc.org/
6https://pandoc.org/
7https://quartz.jzhao.xyz/
8https://docs.github.com/en/actions
9https://git-scm.com/
10https://pandoc.org/installing.html
11https://www.gnu.org/software/make/
12https://www.python.org
13https://quartz.jzhao.xyz/

3

https://princomp.github.io/
https://princomp.github.io/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://quartz.jzhao.xyz/
https://docs.github.com/en/actions
https://git-scm.com/
https://pandoc.org/installing.html
https://www.gnu.org/software/make/
https://www.python.org
https://quartz.jzhao.xyz/

• github’s actions14.

But note that knowing git and markdown are enough to contribute on-
line through the github repository15.

While most of those tools are standard (with the exception of quartz, but
it relies itself on the standard Node16 and npm technologies), we acknowl-
edge that

1. It is challenging to understand that many different technologies,
2. We should strive to welcome contributions from collaborators not

familiar with them,
3. Our set-up is unique in some respects.

This guide tries to alleviate some challenges resulting from this overall
unique and diverse resource organization. For more details about our
tools, please refer to the Installing dependencies and Repository Mainte-
nance sections.

Locating Resources

To obtain the latest version of this resource, you can either

• visit the accompanying website princomp.github.io17,
• download the latest version of the built resource18,
• clone our repository19.

This resource is an extension of csci-1301.github.io/20, please refer to their
user guide21 for more information about it.

Editing Resources

If you are new to this project, first read through Contributing Guidelines22

to learn how you can contribute to the improvement of this resource, and
if applicable, how to join a contributing team.

14https://docs.github.com/en/actions
15https://github.com/princomp/princomp.github.io
16https://nodejs.org/
17https://princomp.github.io
18https://github.com/princomp/princomp.github.io/releases/download/latest/release.

zip
19https://github.com/princomp/princomp.github.io/
20https://csci-1301.github.io/
21https://csci-1301.github.io/user_guide.html#locating-course-resources
22/contributing

4

https://docs.github.com/en/actions
https://github.com/princomp/princomp.github.io
https://nodejs.org/
https://princomp.github.io
https://github.com/princomp/princomp.github.io/releases/download/latest/release.zip
https://github.com/princomp/princomp.github.io/releases/download/latest/release.zip
https://github.com/princomp/princomp.github.io/
https://csci-1301.github.io/
https://csci-1301.github.io/user_guide.html#locating-course-resources
/contributing

Best practices for all forms of content

Inclusivity Follow the IT Inclusive Language Guide23 from the University
of Washington:

use gender-neutral terms; avoid ableist language; focus on
people not disabilities or circumstances; avoid generalizations
about people, regions, cultures and countries; and avoid
slang, idioms, metaphors and other words with layers of
meaning and a negative history.

Typically, we recommend using

• “unethical hacker” instead of “black hat”,
• “main” instead of “master”,
• “blank space” instead of “white space”,
• “display on the screen” instead of “printing”, -etc.

In doubt, please start by referring to this list of problematic words and
phrases24.

Structure for accessibility

• All resources are titled
– title each markdown document by having one (and only one)
title at top level (that is, using #),

– use subtitles when appropriate,
– title all images with a descriptive title and add an alt-tag,
– title all code blocks in labs and lecture notes.

• All resources are labelled when applicable, see content labelling
for more details

Resources to assess accessibility:

• Affordable Learning Georgia’s guide25

• Specific Review Standards from the QM Higher Education Rubric26

• UWG Accessibility Services’s guide27

• Penn State’s recommendations for alternative text and complex
images.28

23https://itconnect.uw.edu/guides-by-topic/identity-diversity- inclusion/inclusive-
language-guide/

24https://itconnect.uw.edu/guides-by-topic/identity-diversity- inclusion/inclusive-
language-guide/#list

25https://alg.manifoldapp.org/projects/oer-accessibility-series-and-rubric
26https://www.qualitymatters.org/sites/default/files/PDFs/StandardsfromtheQMHigher

EducationRubric.pdf
27https://docs.google.com/document/d/16Ri1XgaXiGx28ooO-zRvYPraV3Aq3F5ZNJYbV

DGVnEA/edit?ts=57b4c82d#
28https://accessibility.psu.edu/images/

5

https://itconnect.uw.edu/guides-by-topic/identity-diversity-inclusion/inclusive-language-guide/
https://itconnect.uw.edu/guides-by-topic/identity-diversity-inclusion/inclusive-language-guide/
https://itconnect.uw.edu/guides-by-topic/identity-diversity-inclusion/inclusive-language-guide/#list
https://itconnect.uw.edu/guides-by-topic/identity-diversity-inclusion/inclusive-language-guide/#list
https://alg.manifoldapp.org/projects/oer-accessibility-series-and-rubric
https://www.qualitymatters.org/sites/default/files/PDFs/StandardsfromtheQMHigherEducationRubric.pdf
https://www.qualitymatters.org/sites/default/files/PDFs/StandardsfromtheQMHigherEducationRubric.pdf
https://docs.google.com/document/d/16Ri1XgaXiGx28ooO-zRvYPraV3Aq3F5ZNJYbVDGVnEA/edit?ts=57b4c82d#
https://docs.google.com/document/d/16Ri1XgaXiGx28ooO-zRvYPraV3Aq3F5ZNJYbVDGVnEA/edit?ts=57b4c82d#
https://accessibility.psu.edu/images/

• WebAim Color Contrast Checker29

• WebAIM (Web Accessibility In Mind)30

Markdown Text documents are written using standard markdown syn-
tax31. More precisely,

• in the markdown+emoji format, that is, in pandoc’s markdown32,
using the emoji33 extension34),

• using the pandoc-include35 filter,
• and a custom36 filter that sets all the code blocks37, or all the code
block and inline code38’s syntax highlighting to C# by default.

Because of the way the markdown is processed, please refrain from us-
ing the “ and ” characters: pandoc will automatically convert " into
language-appropriate quotes for us.

Images

• Images belong in source/img/ directory.
• Explain the image in written form.
• Title each image, this will create a URL for the image and enables
linking to it.

• Always include a descriptive alt tag for accessibility.
• Do not rely on everyone seeing colors the same way39.
• Prefer scalable vector images.
• When referring to images in markdown, use path from root, see ex-
ample below

Syntax example. The quoted text is the alt tag and in parentheses is path
to file

!["image of visual studio IDE"](./img/vs_ide.jpg){
width=80% }↪

29https://webaim.org/resources/contrastchecker/
30https://webaim.org/
31https://commonmark.org/
32https://pandoc.org/MANUAL.html#pandocs-markdown
33https://pandoc.org/MANUAL.html#extension-emoji
34https://pandoc.org/MANUAL.html#extensions
35https://github.com/DCsunset/pandoc-include
36https://github.com/princomp/princomp.github.io/tree/main/source/templates/filters
37https://github.com/princomp/princomp.github.io/blob/main/source/templates/filter

s/default-code-class-block.lua
38https://github.com/princomp/princomp.github.io/blob/main/source/templates/filter

s/default-code-class-block-inline.lua
39https://www.wikiwand.com/en/Color_blindness

6

https://webaim.org/resources/contrastchecker/
https://webaim.org/
https://commonmark.org/
https://pandoc.org/MANUAL.html#pandocs-markdown
https://pandoc.org/MANUAL.html#extension-emoji
https://pandoc.org/MANUAL.html#extensions
https://github.com/DCsunset/pandoc-include
https://github.com/princomp/princomp.github.io/tree/main/source/templates/filters
https://github.com/princomp/princomp.github.io/blob/main/source/templates/filters/default-code-class-block.lua
https://github.com/princomp/princomp.github.io/blob/main/source/templates/filters/default-code-class-block.lua
https://github.com/princomp/princomp.github.io/blob/main/source/templates/filters/default-code-class-block-inline.lua
https://github.com/princomp/princomp.github.io/blob/main/source/templates/filters/default-code-class-block-inline.lua
https://www.wikiwand.com/en/Color_blindness

The { width=80% } attribute is optional.

Images generated by LaTeX Some images are generated by LaTeX: the
.tex file is what is used to generate the .pdf file, and then pdf2svg con-
verts the .pdf into a .svg file. The .svg files are used in the .html, .odt
and .docx documents, while the .pdf is used in the .pdf documents.
The resulting images are added to the repository so that there is no need
to re-compile them every time, or to set-up LaTeX and latexmk on each
system.

UML class diagrams The UML class diagrams are created using Mer-
maid40 and located in source/uml. To create a new class diagram, say
for a Documentation class, follow those steps:

1. Create a Documentation.txt file in source/uml that follows the
syntax for class diagrams41 (note that there is no need to add
classDiagram at the beginning, it will be done automatically),

2. Run (from the source/ folder) make uml/Documentation.md,
3. Integrate the resulting drawing, properly captioned and with a link

to your Documentation.txt file (for visually impaired readers, or to
facilitate automatic processing) using !include uml/Documentation.md.

Source code

• Source code programs belong in source/code/ directory.
• The code included in this directory should either be:

– Placed in the snippets/ sub-folder, and be a complete pro-
gram.

– Placed in the projects/<solution>/<project>/ sub-folder,
and contains a Program.cs file:
∗ Go to source/code/projets/,
∗ Create a subdirectory with the name of the solution you

would like to use,
∗ Create a subdirectory with the name of the project you

would like to use,
∗ Create a file called Program.cs in
source/code/projects/<solution>/<project>/Program.cs
∗ If you want to add additional classes, add them in

code/projects/<solution>/<project>/<Class>.cs
files.

Do not add solution (sln) or project (csproj) files: they
will be created automatically using the project and so-
lution’s name you specified (and a makefile rule similar

40https://mermaid.js.org/
41https://mermaid.js.org/syntax/classDiagram.html

7

https://mermaid.js.org/
https://mermaid.js.org/syntax/classDiagram.html

to this one42), if multiple classes are present they will
all be linked, and the resulting archive will be hosted at
content/code/projects/<solution>.zip.

• Source code that is faulty, partial, or does not terminate can be
included in markdown as inline code block.

Code snippets can be included in markdown documents using pandoc-
include43 filter:

```text
!include code/sample.cs
```

Note that for an unknown reason44, no special characters (such as _)
should be used in the filenames.

• Title each source code block included in markdown, this will create
a URL for the code block and enables linking to it.

• code blocks are by default annotated as csharp
– syntax highlighting is applied automatically at build time
based on the code block language

– to use a language other than C#, specify the language locally
in the specific code block:

• only include code in text form such that it can be copy-pasted for
reuse

• make sure to includeblank lines before andafter codeblocks, since
the absence of these can cause the code block to display incor-
rectly.

Tidying Source code CSharpier45 is used to tidy the source code and
make it uniform. Use

make tidy

to tidy all the source code present in the source/code/ folders. The
configuration file46 is at source/code/csharpierrc.yaml.

Creating new lectures

Lecture notes belong to the source/lectures/ directory.

To create a new lecture, for instance on exception handling:
42https://github.com/csci-1301/C-Sharp-project-maker
43https://github.com/DCsunset/pandoc-include
44https://github.com/DCsunset/pandoc-include/issues/45
45https://csharpier.com/
46https://csharpier.com/docs/Configuration

8

https://github.com/csci-1301/C-Sharp-project-maker
https://github.com/DCsunset/pandoc-include
https://github.com/DCsunset/pandoc-include/issues/45
https://csharpier.com/
https://csharpier.com/docs/Configuration

1. Create a directory corresponding to the theme if it does not exist
already (say, exceptions), under source/lectures/ directory

• Follow the existing pattern for naming convention which is low-
ercase and separation by underscores.

• At the root of this folder, create an index.md file (so, at
source/lectures/exceptions/index.md) containing

title: Desired Title for Theme

so that your theme will be labeled “Desired Title for Theme” on
the website’s menu (see content labelling on how to further
label it).

2. Under the directory corresponding to your theme, create a file
named after the lecture’s title (e.g., exception-handling.md) in
lowercase. Write lecture notes in this file using markdown.

3. Edit the source/order file and insert where appropriate

• ./lectures/exception/ (if you created a folder called
exception),

• ./lectures/exception/exception-handling.md (which
must be between ./lectures/exception/ and the next
./lectures/xyz/ folder).

This last step will insure that your lecture is 1. included in the book,
2. sorted correctly on the website’s menu (the default ordering is
alphabetical).

If the lecture does not appear, here are the steps for troubleshooting the
issue:

1. Check that after committing changes, the automated build has
completed successfully, by checking the workflows47,

2. The newly created lecture is under the subdirectory you picked in
the source/lectures/ directory48,

3. The .md file exists,
4. Hard refresh the browser page if viewing the resources website

Known issues: When concatenating files pandoc may or may not in-
clude empty spaces between individual files. This may cause the subse-
quent lecture title to not appear in the generated book. For this reason,
each lecture file should end with a newline.

47https://github.com/princomp/princomp.github.io/actions
48https://github.com/princomp/princomp.github.io/tree/main/source/lectures

9

https://github.com/princomp/princomp.github.io/actions
https://github.com/princomp/princomp.github.io/tree/main/source/lectures

Creating new labs

The process is very close to the process to create a new lecture, with the
following exceptions:

• All lab resources are located under source/labs/ directory, at root
level (there is no “theme” sub-folder).

• You do not need to edit the source/order file, since labs are not
included in the book nor sorted on the website.

Additionally, remember to:

1. Choose a short and unique name that describes the lab (say,
StringMethods.md)
• follow the existing convention for naming,
• do not number labs or make assumptions about numbering
because another instructor may not follow the exact same lab
order,

• make the lab standalone to support alternative ordering
(avoid assumptions about what was done “last time”),

• do not make assumptions about student using specific OS, in-
clude instructions for all supported options (Windows, MacOS,
Linux),

• do not make assumptions about student using Visual Studio,
refer to IDE instead.

2. (optional) You can add a downloadable project (use a link of the
form [the Rectangle project](./code/projects/Rectangle.zip))
or include snippets of code by following our instructions to add
source code.

Using this established build system generates labs that are cross-platform
(Windows, MacOS, Linux) and work on different IDEs (this process is doc-
umented in the corresponding repository49). Do not attempt to create
labs locally as that approach does not have the same cross-platform
guarantee.

Content Labelling

Technically Quartz50 support a powerful tagging system51 which should
be leveraged. Markdown files can contain at their very top a YAMLmeta-
data block52 containing, e.g.

tags:

49https://github.com/csci-1301/C-Sharp-project-maker
50https://quartz.jzhao.xyz/authoring-content#syntax
51https://quartz.jzhao.xyz/features/folder-and-tag-listings#tag-listings
52https://pandoc.org/MANUAL.html#extension-yaml_metadata_block

10

https://github.com/csci-1301/C-Sharp-project-maker
https://quartz.jzhao.xyz/authoring-content#syntax
https://quartz.jzhao.xyz/features/folder-and-tag-listings#tag-listings
https://pandoc.org/MANUAL.html#extension-yaml_metadata_block

- Resource

to “tag” this resource with “Resource” so that it will appears in the tag
listing53. To include multiple tags, simply make a list:

tags:
- Resource
- Guide

Conceptually We will follow the guidance provided on this page54:

• Use as Few Tags as Possible
• Limit Yourself to a Self-Defined Set of Tags
• Tags Within Your Set Must Not Overlap
• By Convention, Tags Are in Plural
• Tags Lower Case
• Tags Are Single Words
• Keep Tags on a General Level
• Omit Tags That Are Obvious
• Use One Tag Language
• Explain Your Tags

Styling and Templating
Templating files are under source/templates/ directory. Templates di-
rectory contain layout files that are applied by pandoc when resources
are built: note that the website’s style uses a completely different mech-
anism.

For maintainability reasons it is preferable to apply templates during build
time. This strategy makes it easy to edit templates later and apply those
changes across all resources. Avoid applying templating to individual
resource files whenever possible.

Currently templates directory contains the following:

• docx/ - contains template used to produce .docx files (this tem-
plate is not used yet, for size issues55).

• filters/ - contains pandoc filters for annotating codeblocks, con-
figured to default toC#, which then allows applying syntax highlight-
ing to all code block.

53https://princomp.github.io/tags/Guide
54https://karl-voit.at/2022/01/29/How-to-Use-Tags/
55https://github.com/csci-1301/csci-1301.github.io/issues/156

11

https://princomp.github.io/tags/Guide
https://karl-voit.at/2022/01/29/How-to-Use-Tags/
https://github.com/csci-1301/csci-1301.github.io/issues/156

• html/ - contains template used to produce only the book.html file
(to edit the style of the website, refer to editing website)

• latex - contains templates used to produce .pdf files,
• docx/ - contains template used to produce .odt files.

Updating docx template

Note that this template is not used yet, for (among other) size issues56.

To edit this template, start by obtaining the default template file:

pandoc -o custom-reference.docx --print-default-data-file
reference.docx↪

Then, open reference.docx, and, following loosely this tutorial57, do:

• Click prettymuchanywhere, and right-click on the highlighted style
(displayed if you are under “Home”, you may need to scroll down
the styles),

• Change the font for everything but the source code,
• Click on the “Block code”, then right-click on the highlighted style,
and select the font for the source code,

• The font for “Verbatim Char” was also changed, but I am not sure
if this has an impact,

• Make sure the fonts are embedded58,
• Save and close the document.

This was inspired by this post59 but does not seem to work properly.

Updating odt template

First, output the default template file:

pandoc -o custom-reference.odt --print-default-data-file
reference.odt↪

Then, open reference.odt, and, following loosely this tutorial60, do:

• Click on View, then Styles.
• Right-click on “Preformatted Text”, click on “Modify…”, and then
select the desired font family for source code.

56https://github.com/csci-1301/csci-1301.github.io/issues/156
57https://support.microsoft.com/en-us/office/customize-or-create-new-styles-

d38d6e47-f6fc-48eb-a607-1eb120dec563?ui=en-us&rs=en-us&ad=us
58https://support.microsoft.com/en-us/office/benefits-of-embedding-custom-fonts-

cb3982aa-ea76-4323-b008-86670f222dbc
59https://stackoverflow.com/a/70513063
60https://github.com/jgm/pandoc/wiki/Defining-custom-DOCX-styles-in-LibreOffice-

(and-Word)#libreoffice

12

https://github.com/csci-1301/csci-1301.github.io/issues/156
https://support.microsoft.com/en-us/office/customize-or-create-new-styles-d38d6e47-f6fc-48eb-a607-1eb120dec563?ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/customize-or-create-new-styles-d38d6e47-f6fc-48eb-a607-1eb120dec563?ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/benefits-of-embedding-custom-fonts-cb3982aa-ea76-4323-b008-86670f222dbc
https://support.microsoft.com/en-us/office/benefits-of-embedding-custom-fonts-cb3982aa-ea76-4323-b008-86670f222dbc
https://stackoverflow.com/a/70513063
https://github.com/jgm/pandoc/wiki/Defining-custom-DOCX-styles-in-LibreOffice-(and-Word)#libreoffice
https://github.com/jgm/pandoc/wiki/Defining-custom-DOCX-styles-in-LibreOffice-(and-Word)#libreoffice

• In the dialog or sidebar which opens make sure the button in the
top panel marked with ¶ is highlighted (it is very subtle).

• In the menu at the bottom of the dialog/sidebar choose Applied
Styles. Only “Default Paragraph Style” and “Footer” should appear.

• Right-click on “Default Paragraph Style”, click on “Modify…”, and
then select the desired font family for the rest of the text.

• Then, highlight the A next to ¶.
• Right-click on “Source_Text”, click on “Modify…”, and then select
the desired font family for source code.

• Click on File, then Properties, then on the Font tab, click on “Embed
fonts in the document”.

• Save and close the document.

Building locally
It is generally not necessary to build this resource locally unless the intent
is to preview templating changes or tomake changes to build scripts. For
the purposes of editing content, it is sufficient to make edits to markdown
files and commit those changes.

Installing dependencies To find the current list of dependencies
needed to build this resource, refer to the build and deploy script install
section61. The exact installation steps vary depending on your local
operating system.

In general the following dependencies are needed:

• pandoc62

• texlive63

• make64 and other standard unix utilities (such as sed or wget, all
included in the Windows Subsystem for Linux65),

• python 3.+66

• packages and filters: Pygments67, pandoc-include68, texlive-
xetex69, texlive-latex-extra, lmodern, librsvg2-bin70

• symbola font
61https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build

_and_deploy.yaml
62https://pandoc.org/installing.html
63https://www.tug.org/texlive/
64https://www.gnu.org/software/make/
65https://learn.microsoft.com/en-us/windows/wsl/install
66https://www.python.org/
67https://pygments.org/download/
68https://github.com/DCsunset/pandoc-include#installation
69https://tug.org/xetex/
70https://askubuntu.com/a/31446

13

https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy.yaml
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy.yaml
https://pandoc.org/installing.html
https://www.tug.org/texlive/
https://www.gnu.org/software/make/
https://learn.microsoft.com/en-us/windows/wsl/install
https://www.python.org/
https://pygments.org/download/
https://github.com/DCsunset/pandoc-include#installation
https://tug.org/xetex/
https://askubuntu.com/a/31446

For this later, note that starting with version 1171, the licence is too restric-
tive for non-personal use. As a consequence, users are asked to make
sure they do not use a version greater than v.10.24, which is “free for any
use” and archived on-line72 (curious users can also refer to the related
webpage73). Note that installing this dependency using a unix-like pack-
age manager will result in installing a version of the font that is free to use
in any context74.

You can make sure you are currently using the latest version of panflute
by running

pip install -U panflute

This is needed if running a recent version of pandoc (as of pandoc 3.1.6.1
at least).

Running the build

⚠Warning

Running make all can be very resource-incentive and may render
your system unstable. Read this section entirely before running any
command.

Testing the installation After installing all dependencies, from the
source/ folder, run:

make

to display a list of useful rules.

It is recommended to first run a command building simple documents or
copying files to test your installation, such as

make ../content/docs/about/credits.md
make ../content/docs/about/credits.pdf
make ../content/docs/about/credits.odt
make ../content/docs/about/credits.docx
make ../content/code/projects/Rectangle.zip
make ../content/web-order.ts

71http://web.archive.org/web/20181228102842/http://users.teilar.gr/%7Eg1951d/Symb
ola.pdf

72http://web.archive.org/web/20180307012615/http://users.teilar.gr/~g1951d/Symbola.
zip

73http://web.archive.org/web/20180307012615/http://users.teilar.gr/~g1951d/
74https://metadata.ftp-master.debian.org/changelogs//main/t/ttf-ancient-fonts/ttf-

ancient-fonts_2.60-1.1_copyright

14

http://web.archive.org/web/20181228102842/http://users.teilar.gr/%7Eg1951d/Symbola.pdf
http://web.archive.org/web/20181228102842/http://users.teilar.gr/%7Eg1951d/Symbola.pdf
http://web.archive.org/web/20180307012615/http://users.teilar.gr/~g1951d/Symbola.zip
http://web.archive.org/web/20180307012615/http://users.teilar.gr/~g1951d/Symbola.zip
http://web.archive.org/web/20180307012615/http://users.teilar.gr/~g1951d/
https://metadata.ftp-master.debian.org/changelogs//main/t/ttf-ancient-fonts/ttf-ancient-fonts_2.60-1.1_copyright
https://metadata.ftp-master.debian.org/changelogs//main/t/ttf-ancient-fonts/ttf-ancient-fonts_2.60-1.1_copyright

make ../content/img/create_project_monodevelop.png
make ../content/fonts/hack/hack-italic-subset.woff

If this was successful, you can compile the resources needed for theweb-
site using

make build-light

Building all resources You can run

make -l 2.5 -j$(nproc --ignore=2) all

to create and populate the content/ folder at root level with all the re-
sources compiled. Note that this command limits the number of jobs in
parallel and the number of CPU used (using this trick75), but that tweak-
ing those values76 may be needed to find the sweet spot on your own
machine.

If you want to speed-up the compilation time, you can run

make fetch

which will fetch the latest build output, extract it and populate the
content/ folder using its content. Due to make’s unique feature77 only
the files whose source was edited will be re-created when executing
make all the next time, hence saving a lot of time. However, please
not that files moved or deleted will still be present in the build.

Website
Editing the website

The website https://princomp.github.io/ is built from the .md files con-
tained in the content/ folder using a dedicated branch78 of quartz79.
To edit the layout, style, or other features such as the footer, please start
by checking out the quartz branch (using git checkout quartz), and
then

• Refer to quartz’s website80, repository81 and general community,
• Knowing that multiple edits already tweaked its style.

A couple of indications about the edits made to quartz:
75https://stackoverflow.com/a/56607839
76https://stackoverflow.com/a/32487943
77https://makefiletutorial.com/
78https://github.com/princomp/princomp.github.io/tree/quartz
79https://quartz.jzhao.xyz/
80https://quartz.jzhao.xyz/
81https://github.com/jackyzha0/quartz

15

https://princomp.github.io/
https://stackoverflow.com/a/56607839
https://stackoverflow.com/a/32487943
https://makefiletutorial.com/
https://github.com/princomp/princomp.github.io/tree/quartz
https://quartz.jzhao.xyz/
https://quartz.jzhao.xyz/
https://github.com/jackyzha0/quartz

• The favicon at quartz/static/, and have been generated using
https://realfavicongenerator.net/.

• Theorder in themenu is constructedusing the content/web-order.ts
file, itself generated from the source/order file in the main branch:
refer to the makefile (again, in the main branch) for explanations
on how this file is created, to the quartz documentation82 for the
main inspiration, and to the quartz.layout.ts and sortFn.ts
files for the concrete implementation. If you change the order,
setting

useSavedState: true, // To debug the explorer, change to
"false" (this way, the menu is not cached /
permanent),

↪
↪

to false in the quartz/components/Explorer.tsx file may help in re-
freshing the menu more easily.

• Other files edited or created include:
– The files
quartz/components/AlternativeFormats.tsx
quartz/components/styles/alternativeFormats.scss
list alternative formats at the top of the page,

– The files
quartz/components/Comments.tsx
quartz/components/scripts/darkmode.inline.ts
quartz/components/Footer.tsx
quartz/components/styles/listPage.scss
customize the footer and add a link to our repository feedback
(while following the selected style83),

– quartz/styles/base.scss loads a different set of fonts,
– The files
quartz/components/Explorer.tsx
quartz.layout.ts
tweak the menu and layout,

– quartz.config.ts sets meta-data about the website,
– quartz/components/pages/404.tsx customizes the 404 er-
ror message,

– quartz/plugins/emitters/assets.ts emits the .md files
(they are not available by default),

– quartz/components/index.ts ties it all together.

Refer to Generate the git patch for instruction on how to generate a
patch containing all the edits performed to our local copy of quartz.

82https://quartz.jzhao.xyz/features/explorer#use-sort-with-pre-defined-sort-order
83https://github.com/jackyzha0/quartz/issues/1161

16

https://realfavicongenerator.net/
https://quartz.jzhao.xyz/features/explorer#use-sort-with-pre-defined-sort-order
https://github.com/jackyzha0/quartz/issues/1161

Deploying locally the website

Follow closely those steps:

• Build the resource locally (note that running make build-light is
enough to deploy the website).

• Move to the quartz branch by running

git checkout quartz

Note that the content/ folder is still here, but that the source is ab-
sent from this branch: only files related to quartz are committed in
this branch.

• Rename the content/index.md file (this is due to an annoying
bug84) by running

mv content/index.md content/index_b.md

• Follow quartz’s instructions85:

– If you don’t have at least Node v18.14 and npm v9.3.1, install
node86 and npm87 (npm is probably installed automatically
when you install node),

– Run the following commands at root level (do not enter the
quartz/ folder):

npm i
npx quartz create

for this last command, select

│ ● Empty Quartz

then,

│ ● Treat links as shortest path ((default))

– If the previous command succeeded, run

mv content/index_b.md content/index.md

to restore our index file, then

npx quartz build --serve

to start the server. Then, navigate to localhost:8080/ to see the
website deployed locally.

84https://github.com/jackyzha0/quartz/issues/1175
85https://quartz.jzhao.xyz/#-get-started
86https://nodejs.org/en/download/package-manager
87https://github.com/npm/cli?tab=readme-ov-file#installation

17

https://github.com/jackyzha0/quartz/issues/1175
https://quartz.jzhao.xyz/#-get-started
https://nodejs.org/en/download/package-manager
https://github.com/npm/cli?tab=readme-ov-file#installation

Updating quartz

Our local copy of quartz, in the quartz branch88, is “frozen” in the sense
that it corresponds to the development of quartz at a point of time. It is
possible to

1. Save the edits made to our local copy (as a git patch89),
2. Pull the current version of quartz in a different branch (called

quartz-update),
3. Apply our edits to this updated version of quartz,
4. Replace the quartz branch with the quartz-update branch to

deploy the updated version of quartz with our edits.

This process is not without risks and requires to be able to deploy locally
the website to test it before deploying it. The following guide was inspired
by this discussion90.

Generate the git patch The first step is to save as a git patch all the
edits that have been made on our local copy of quartz since it was last
updated.

• Make sure you are

1. At root level in your repository’s copy,
2. In the quartz branch,
3. That your branch is up-to-date.

by running a command such as

pwd && git checkout quartz && git pull

• Locate the commit (short) id of the last commit performed by
quartz maintainer. A way of achieving this is to look for “PCP” in
the commit messages, using

git rev-parse --short :/PCP

and then to look for the commit id of the commit that came before
it. For instance, if the previous command returns 847e3356, then
the command

git rev-parse --short 847e3356^1

will return information about the commit that came before that last
commit: we will assume its (short) id is 3b74453f in the following.

88https://github.com/princomp/princomp.github.io/tree/quartz
89https://git-scm.com/docs/git-apply
90https://github.com/jackyzha0/quartz/issues/1145

18

https://github.com/princomp/princomp.github.io/tree/quartz
https://git-scm.com/docs/git-apply
https://github.com/jackyzha0/quartz/issues/1145

Visual inspection using github’s interface91 or a program such as
gitk92 can facilitate this process. Note that removing the --short
option will give the long version of the id, which may be harder to
compare.

• Use the (short) id previously obtained to generate a patch contain-
ing all the changes made since that commit:

git diff-index 3b74453f --binary > pcp_quartz_patch

The --binary option insures that any file created will be included
in the patch: as a result, this file can be heavy.

• Make sure this pcp_quartz_patch file is located at the root level in
your repository’s copy but do not commit it to the repository.

Clone the latest version of quartz Execute the following commands:

git remote add quartz
https://github.com/jackyzha0/quartz.git↪

git fetch quartz
git checkout -b quartz-update quartz/v4

where quartz-update is the name we use for our branch, and
quartz/v4 is the name of the branch in the quartz repository we want
to copy.

Apply the git patch There are two ways of applying the patch. First,
make sure you are in the quartz-update branch by executing

git rev-parse --abbrev-ref HEAD

Then follows the first method if possible.

Using apply First, check if the pcp_quartz_patch patch is applicable,
by executing

git apply --ignore-space-change --ignore-whitespace
--check --reject pcp_quartz_patch↪

Some sections of the patch may be rejected: make sure you take note
of which file will need to be merged by hand. Then, apply the patch,
using

git apply --ignore-space-change --ignore-whitespace
--reject pcp_quartz_patch↪

91https://github.com/princomp/princomp.github.io/commits/quartz/
92https://git-scm.com/docs/gitk

19

https://github.com/princomp/princomp.github.io/commits/quartz/
https://git-scm.com/docs/gitk

Then look for the .rej files: they will contain the edited version of a file
that you will need to merge manually with the updated version of the
same file from quartz’s update.

Using patch If git apply gave an error starting with

Checking patch quartz.layout.ts...
error: while searching for:

then, instead, do

patch -p1 < pcp_quartz_patch

And look for the .rej files as described above. Note that using this tech-
nique requires to copy the binary files by hand. Indeed, you should re-
ceive warning messages like

File quartz/static/android-chrome-192x192.png: git binary
diffs are not supported.↪

and those files will have to be copied by hand from another branch, and
/ or re-added to the repository.

Testing Once you are done manually merging, test your updated ver-
sion by deploying locally the website and making sure that quartz does
not return any error. If everything looks ok, add all the new files and com-
mit the edits using a message containing the “PCP” string (to facilitate
future generation of git patch), and push, using for example:

• First, use bash git add --all -n . to list all the files you
are about to add: make sure you are not adding files from the
content/ folder, for instance. If everything looks fine, proceed to
the next step.

• Then, actually add the files, commit, and push, using:

git add --all
git commit -a -m "Applying previous PCP patch."
git push origin quartz-update

Update the branch If you were able to fix all the conflicts and to check
that the website could still be deployed locally, then overwrite the
quartz branch with the quartz-update branch, by executing93:

Make sure your working tree is in a clean state
git status

93https://www.reddit.com/r/git/comments/bqx85v/comment/eo8j4zh

20

https://www.reddit.com/r/git/comments/bqx85v/comment/eo8j4zh

Check out the branch you want to change, e.g.
some-branch↪

git checkout quartz

Reset that branch to some other branch/commit, e.g.
target-branch↪

git reset --hard quartz-update

If the deployment was successful and everything seems to be working,
you can delete the quartz-update branch, locally then remotely, by ex-
ecuting

git branch -D quartz-update
git push -d origin quartz-update

Repository Maintenance
This repository uses following tools and technologies:

• git - version control
• Github - to make source code available on the web
• markdown, LaTeX - for writing the resources
• pandoc - for converting documents to various output formats
• make - for specifying how to build this resource
• github actions - to automatically build the resource
• github pages - to serve the accompanying website
• additional packages for specific tasks: texlive, Pygments, pandoc
filters, lua filter94, etc.

• fonts-symbola - to produce the emoji and other symbols in the pdf
document.

• utteranc.es95 - for feedback through website
• csharpier96 - to tidy the C# source code

Build outputs

The resource material is organized into specific directories inside the
source/ folder. These resources are then compiled into templated
documents in various formats using pandoc97. The makefile explains the
exact steps applied to each type of resource.

94https://github.com/jgm/pandoc/issues/2104
95https://utteranc.es/
96https://github.com/belav/csharpier
97https://pandoc.org/MANUAL.html

21

https://github.com/jgm/pandoc/issues/2104
https://utteranc.es/
https://github.com/belav/csharpier
https://pandoc.org/MANUAL.html

Github actions

This resource is built automatically every time changes concerning files in
the source/ folder are committed to the main branch of the repository.
This is configured to run on Github actions98. The workflow99 that is auto-
matically triggered has two jobs: one to build the resource, and one to
deploy it.

Currently Github actions offers unlimited free build minutes for public
repositories (and 2000 min/mo. for private repositories, should we ever
need them), which hopefully continues in perpetuity (if it does not there
are other alternative services). Going with one specific CI service over
another is simply a matter of preference.

Following a successful build, the build script will automatically deploy
the generated resources to an accompanying website hosted on github
pages100.

Fetch and No Fetch Versions There is a second workflow101 that is iden-
tical to the first one with one important exception: to speed up compila-
tion, build_and_deploy.yaml uses make fetch to speed up compila-
tion time by re-downloading the latest build output, and then compiling
only the required files. This can sometimes complicate the propagation
of changes, typically if a template is modified (as this does not triggers a
re-compilation of the files using it currently) or if a file is renamed (as the
previous version will not be deleted).

Thebuild_and_deploy_no_fetch.yaml102 canbe triggeredmanually103 to
force a “fresh” remote compilation.

Creating releases

Currently a github action is setup to do the following: whenever a new
commit is made to the main branch, the action will build the resource
and add the generated resources as a pre-release104 and tag them as

98https://github.com/features/actions
99https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build

_and_deploy.yaml
100https://pages.github.com/
101https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build
_and_deploy_no_fetch.yaml
102https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build
_and_deploy_no_fetch.yaml
103https://github.com/princomp/princomp.github.io/actions/workflows/build_and_dep
loy_no_fetch.yaml
104https://github.com/princomp/princomp.github.io/releases

22

https://github.com/features/actions
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy.yaml
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy.yaml
https://pages.github.com/
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy_no_fetch.yaml
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy_no_fetch.yaml
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy_no_fetch.yaml
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy_no_fetch.yaml
https://github.com/princomp/princomp.github.io/actions/workflows/build_and_deploy_no_fetch.yaml
https://github.com/princomp/princomp.github.io/actions/workflows/build_and_deploy_no_fetch.yaml
https://github.com/princomp/princomp.github.io/releases

“latest”105. If a subsequent commit occurs it will overwrite the previous
latest files and become the new latest version. This cycle continues until
maintainers are ready to make a versioned release (or “package”).

Making a versioned release is done as follows:

1. Go to repository releases106

2. Choose latest, which contains the files of the latest build
3. Edit this release, giving it a semantic name and a version, such as

v1.0.0. Name and version can be the same. (cf. semantic version-
ing107)

4. Enter release notes to explain what changed since last release
5. Uncheck “This is a pre-release”
6. Check “Set as the latest release”
7. Update release

Following these steps will generate a new, versioned release. The ver-
sioned releases will be manually uploaded to and archived on galileo.

Once this is done, remember to create the next pre-release:

1. Go to the repository releases108.
2. Click on “Draft a new release”.
3. Pick the tag “Latest”.
4. Click on “Generate release notes”
5. Check “This is a pre-release”
6. Click on “Publish release”

Maintaining repository feedback

Resource users can submit feedback about the resource through various
means, one of which is leaving comments on the website. This feature
is enabled by utteranc.es109, using repositories hosted by the princomp
github organization110.

Tomanage user feedback over time, a semester-specific repository is cre-
ated for issues only. This must be a public repository and located under
the same organization as the resources repository. utteranc.es widget is
configured to point to this repository. After a semester is over, this feed-
back repository will be archived, and a new one created for the next
semester. This will simultaneously archive all older issues and reset the
feedback across website pages.
105https://github.com/princomp/princomp.github.io/releases/tag/latest
106https://github.com/princomp/princomp.github.io/releases
107https://semver.org/
108https://github.com/princomp/princomp.github.io/releases
109https://utteranc.es/
110https://github.com/princomp

23

https://github.com/princomp/princomp.github.io/releases/tag/latest
https://github.com/princomp/princomp.github.io/releases
https://semver.org/
https://github.com/princomp/princomp.github.io/releases
https://utteranc.es/
https://github.com/princomp

Migrating feedback repository The steps for migrating feedback target
repository are as follows:

1. Create a new public repository under princomp github or-
ganization111. Follow the established naming convention
(feedback-<fall|spring|summer>-<YYYY>), and leave all
the options except for visibility (which needs to be set to public) by
default.

2. Go to repository Issues (make sure issues is enabled in repository set-
tings).

3. Create a new label whose label name is comment (tomatchwidget
configuration as indicated in quartz/components/Footer.tsx, in
the quartz branch).

4. Go to Organization Settings > Installed GitHub Apps112.

5. Choose “utterances” > “configure”

6. Under “Repository access” > “Only select repositories”

• Select the repository created in step 1.
• Remove the previous semester feedback repository.
• Save.

7. In princomp/princomp.github.io/ repository, in the quartz
branch113, open quartz/components/Footer.tsx

8. Update utteranc.es widget code to point to the new feedback
repository created in step 1.

<script data-external="1"
src="https://utteranc.es/client.js"
repo="princomp/{REPOSITORY_NAME}"
label="comment" …>

</script>

9. Commit change to quartz/components/Footer.tsx

10. Make sure the feedbackworks aftermigration. If it does not, retrace
your steps.

11. Archive the earlier feedback repository in its settings.
111https://github.com/organizations/princomp/repositories/new
112https://github.com/organizations/princomp/settings/installations
113https://github.com/princomp/princomp.github.io/blob/quartz/quartz/components/F
ooter.tsx

24

https://github.com/organizations/princomp/repositories/new
https://github.com/organizations/princomp/settings/installations
https://github.com/princomp/princomp.github.io/blob/quartz/quartz/components/Footer.tsx
https://github.com/princomp/princomp.github.io/blob/quartz/quartz/components/Footer.tsx

Maintaining Instructors / G/UCA rights

This is handled by the csci-1301 github organization114 and docu-
mented at https://csci-1301.github.io/user_guide.html#maintaining-
instructors-guca-rights.

114https://github.com/csci-1301

25

https://csci-1301.github.io/user_guide.html#maintaining-instructors-guca-rights
https://csci-1301.github.io/user_guide.html#maintaining-instructors-guca-rights
https://github.com/csci-1301

	Dev. Guide
	Resources Organization Overview
	Folders and Files
	Building and Deploying
	Tools, Briefly
	Locating Resources

	Editing Resources
	Best practices for all forms of content
	Creating new lectures
	Creating new labs
	Content Labelling

	Styling and Templating
	Updating docx template
	Updating odt template

	Building locally
	Website
	Editing the website
	Deploying locally the website
	Updating quartz

	Repository Maintenance
	Build outputs
	Github actions
	Creating releases
	Maintaining repository feedback
	Maintaining Instructors / G/UCA rights

