
Contents

Credits 8
Purpose . 8
Authors . 8
Supports . 9
Tools . 9

Software . 9
Fonts . 10
Services . 10

Licence . 10

Contributing 11
How can I contribute? . 11

If you are a student . 11
If you are an instructor . 11
If you are a UCA . 11
If you are an outside collaborator 11

Next steps for editors . 12

Dev. Guide 12
Resources Organization Overview 12

Folders and Files . 12
Building and Deploying 13
Tools, Briefly . 14
Locating Resources . 15

Editing Resources . 15
Best practices for all forms of content 15
Creating new lectures . 19
Creating new labs . 20
Content Labelling . 21

Styling and Templating . 22
Updating docx template 22
Updating odt template 23

Building locally . 23
Website . 26

Editing the website . 26
Deploying locally the website 27
Updating quartz . 28

Repository Maintenance . 30
Build outputs . 31
Github actions . 31
Creating releases . 32
Maintaining repository feedback 33
Maintaining Instructors / G/UCA rights 34

1

How to get Help 34
In General . 34
For Students of the School of Computer and Cyber Sciences . . 35

School of Computer and Cyber Sciences Tutoring Center . 35
ACM Club . 35
Other Club Activities . 36

How to Ask a Question? . 36
Commenting Using a Github Account 36

Choosing Your Major 37
Which degree is best for you? 37
Summary . 38

So which degree is “best”? 38

Course Assistants 39
What Is an Undergraduate Course Assistant? 39
How Do I Become One? . 40
I Am a UCA, What Should I Do Now? 40
What Is the Difference With a GRA? 40
What Is the Difference With a URA? 41

UCA starting guide 41
The Three Rules . 41
Editing the Resources . 42

Computer Requirements 48
In Short . 48
In Terms of Hardware . 48
In Terms of Operating System 49

Virtual Machines . 50
Where to Buy? . 50
Is There Anything Else I Should Know? 51

Installing Software 51
Generalities on Installing Software 51
Executing Code Found on-line 52
Accessing an IDE . 52

Installing an IDE On Your Own Computer 53
Accessing One of the Computers in a Computer Lab . . . 59
Compiling Code On-Line 59

(Un)Zipping Archives 59
Unzipping Files . 60

Windows . 60
Linux . 60
macOS . 60

Zipping Files . 60

2

Windows . 60
Linux . 61
macOS . 61

But Where Is My Project? . 61

Keyboard Shortcuts 62
Foreword . 62
Useful Shortcuts . 63

Build solution . 63
Exit any program* . 63
Redo* . 63
Run/execute program . 64
Save* . 64
Save All* . 64
Undo* . 64
Comment Code Selection 64
Uncomment Code Selection 64

Datatypes in C 65
Value Types . 65

Numeric . 65
Logical . 66
Character . 66

Literals . 66
Compatibility . 66
Result Type of Operations . 67
References . 67

Computers and Programming 68
Principles of Computer Programming 68
Programming Language Concepts 68
Software Concepts . 71
Programming Concepts . 73

Programming workflow 73
(Integrated) Development Environment 73

C# Fundamentals 74
Introduction to the C# Language 74
The Object-Oriented Paradigm 75
First Program . 76

Hello World . 76
Rules of C# Syntax . 78
Conventions of C# Programs 79
Reserved Words and Identifiers 80
Write and WriteLine . 81
Escape Sequences . 82

3

Datatypes and Variables 84
Datatype Basics . 84
Literals and Variables . 85

Literals and their types . 85
Variables overview . 85

Variable Operations . 86
Declaration . 86
Assignment . 86
Initialization (Declaration + Assignment) 87
Assignment Details . 87
Displaying . 87

Format Specifiers . 88
Variables in Memory . 90

Sizes of Numeric Datatypes 90
Value and Reference types 92

Operators 93
Arithmetic Operators . 93
Arithmetic and variables . 93
Compound assignment operators 94
Increment and Decrement Operators 95

Increment and decrement basics 95
Difference between prefix and postfix 96
Using increment/decrement in expressions 97

Arithmetic on Mixed Data Types 97
Implicit conversions in math 98
Explicit conversions in math 98

Order of Operations . 99

Conversions 100
Assignments from different types 100
Implicit conversions . 100
Explicit conversions . 102

Inputs and Outputs 103
Reading Input from the User 103

Parsing user input . 105
More detail on the Parse methods 106
Correct input formatting 107

Output with Variables . 109
Converting from numbers to strings 109
The ToString() method 109

String Concatenation . 110
Output with concatenation 111

Introduction 112

4

Class and Object Basics . 112
Writing Our First Class . 113
Using Our Class . 116
Flow of Control with Objects 117
Introduction to UML . 122
Variable Scope . 123
Constants . 127
Reference Types: More Details 128

More Advanced Object Concepts 130
Default Values and the ClassRoom Class 130
Constructors . 131
Writing ToString Methods . 135
Method Signatures and Overloading 137
Constructors in UML . 141
Properties . 141

The static Keyword 145
Static Methods . 145

Different ways of calling methods 145
Declaring static methods 146
static methods and instances 146
Uses for static methods 147

Static Variables . 150
Defining static variables 150
Using static variables 151
Static methods and variables 152
Summary of static access rules 153

Static Classes . 153

Introduction 154

Booleans 154
Variables . 154
Operations on Boolean Values 156
Equality and Relational Operators 157
Equality Operators . 157
Relational Operators . 158
Precedence of Operators . 159

if 160
if Statements . 160

Introduction . 160
Example code with an if statement 160
Syntax and rules for if statements 161

if-else Statements . 162

5

Syntax and comparison 163
Nested if-else Statements . 164

Using nested if statements 164
if-else-if Statements . 167

If-else-if syntax . 167
Using if-else-if to solve the “floors problem” 168
if-else-if with different conditions 169
if-else-if vs. nested if . 170

Switch 173
Switch Statements . 173

Multiple equality comparisons 173
Syntax for switch statements 175
Example switch statement 176
switch with multiple statements 177
Intentionally omitting break 178
Scope and switch . 180
Limitations of switch . 181

While Loops 182
Introduction to while loops 182
Example code with a while loop 182
Syntax and rules for while loops 183
While loops may execute zero times 184
Ensuring the loop ends . 184
Principles of writing a while loop 186

do while 186
Comparing while and if statements 186
Code duplication in while loops 187
Introduction to do-while . 188
Formal syntax and details of do-while 189
do-while loops with multiple conditions 189

Input Validation 190
Valid and invalid data . 190
Ensuring data is valid with a loop 191
Ensuring the user enters a number with TryParse 192

The foreach Loop 194

For Loops 196
Counter-controlled loops . 196
for loop example and syntax 196
Limitations and Pitfalls of Using for Loops 198

Scope of the for loop’s variable 198
Accidentally re-declaring a variable 198

6

Accidentally double-incrementing the counter 199
More Ways to use for Loops 200

Complex condition statements 200
Complex update statements 201
Complex loop bodies . 201
Combining for and while loops 202

Loop Vocabulary 203

Combining Classes and Decision Structures 205
Using if Statements with Methods 205

Setters with Input Validation 205
Constructors with Input Validation 208
Boolean Parameters . 213
Ordinary Methods Using if 215
Boolean Instance Variables 216

Using while Loops with Classes 218
Input Validation with Objects 218
Using Loops Inside Methods 220
Using Methods to Control Loops 222

Examples . 223
The Room Class . 223
The Loan Class . 224

Break and continue 224
Conditional iteration . 224
Skipping iterations with continue 224
Loops with multiple end conditions 225
Ending the loop with break 226

The Conditional Operator 227
Assignment with the conditional operator 228
Conditional operator examples 229

Arrays 229
Single-Dimensional Arrays . 230

Example . 231
Abridged Syntaxes . 231
Default Values . 232

Custom Size and Loops . 233
Example . 233
The Length Property . 234
Example . 234
Loops with Arrays of Objects 234

Changing the Size . 235
Example . 235

7

For Loops With Arrays . 236

Over and Underflow 237
Overflow . 237
Underflow . 238

Random 239

While Loop With Complex Conditions 241

Credits

Purpose
This website contains all the resources to learn the principles of computer
programming using C#. It is used in the delivery of CSCI 1301 - Princi-
ples of Computer Programming I and CSCI 1302 - Principles of Computer
Programming II in the Bachelor of Science in Computer Science1 at Au-
gusta University2, and contains practical guides and additional resources
for students and instructors.

Authors
At the time of writing, this resource is actively maintained Clément
Aubert3. Additional contributions, by (under)graduate course assistants4

and other contributors, are tracked by version control5.

Some of the material originated from discussion, handouts and contribu-
tions by Clément Aubert6, Aubrey Bryant7, Michael Dowell8, Richard De-
Francisco9, Onyeka Ezenwoye10, Leszek Gasieniec11, Reza Rahaeimehr12,
Neea Rusch13, Edward Tremel14 and Paul York15.

1https://www.augusta.edu/ccs/bs-cs.php
2https://www.augusta.edu
3https://spots.augusta.edu/caubert/#contact
4/docs/academic_life/ca
5https://github.com/princomp/princomp.github.io/graphs/contributors
6http://spots.augusta.edu/caubert/
7https://www.linkedin.com/in/aubrey-bryant-61898176
8https://spots.augusta.edu/mdowell/
9https://www.augusta.edu/faculty/directory/view.php?id=RDEFRANCISCO

10https://www.augusta.edu/faculty/directory/view.php?id=oezenwoye
11https://cgi.csc.liv.ac.uk/~leszek/
12https://www.augusta.edu/faculty/directory/view.php?id=RRAHAEIMEHR
13https://nkrusch.github.io/
14https://edwardtremel.com/
15https://www.augusta.edu/faculty/directory/view.php?id=pyork1

8

https://www.augusta.edu/ccs/bs-cs.php
https://www.augusta.edu
https://spots.augusta.edu/caubert/#contact
/docs/academic_life/ca
https://github.com/princomp/princomp.github.io/graphs/contributors
http://spots.augusta.edu/caubert/
https://www.linkedin.com/in/aubrey-bryant-61898176
https://spots.augusta.edu/mdowell/
https://www.augusta.edu/faculty/directory/view.php?id=RDEFRANCISCO
https://www.augusta.edu/faculty/directory/view.php?id=oezenwoye
https://cgi.csc.liv.ac.uk/~leszek/
https://www.augusta.edu/faculty/directory/view.php?id=RRAHAEIMEHR
https://nkrusch.github.io/
https://edwardtremel.com/
https://www.augusta.edu/faculty/directory/view.php?id=pyork1

Additionally, the School of Computer & Cyber Sciences16’s past and
present academic advisors17, Laura Austin, Denise Coleman, Markus
Bacha, and Wennie Squires, and communications & marketing special-
ist, Haley Bourne, improved the Academic Life18 notes through their
suggestions and references.

Supports
The first source of support is the constant stream of feedback we receive
from students and users: thank you.

This project has been monetarily supported by an Affordable Learning
Georgia19 Transformation Grants20 (Proposal 57121) and a Continuous Im-
provement Grant (M260).

22

This project also received the support of Augusta University23’s School
of Computer and Cyber Sciences24 and Center for Instructional Innova-
tion25.

Tools
We strive to prioritize open-source software when possible, and occasion-
ally contribute to them.

Software

This website uses different technologies.
16https://www.augusta.edu/ccs/
17https://www.augusta.edu/ccs/faculty.php#administration
18/docs/academic_life
19https://www.affordablelearninggeorgia.org/
20https://www.affordablelearninggeorgia.org/grants/overview/
21https://www.affordablelearninggeorgia.org/assets/documents/571-proposal.docx
22https://www.affordablelearninggeorgia.org/
23https://www.augusta.edu/
24https://www.augusta.edu/ccs/
25https://www.augusta.edu/innovation/

9

https://www.augusta.edu/ccs/
https://www.augusta.edu/ccs/faculty.php#administration
/docs/academic_life
https://www.affordablelearninggeorgia.org/
https://www.affordablelearninggeorgia.org/grants/overview/
https://www.affordablelearninggeorgia.org/assets/documents/571-proposal.docx
https://www.affordablelearninggeorgia.org/
https://www.augusta.edu/
https://www.augusta.edu/ccs/
https://www.augusta.edu/innovation/

• The markdown source code is converted to (a slightly differ-
ent) md, pdf, odt and docx formats thanks to pandoc26 and
pandoc-include27 (among other lua filters).

• The pdf format is compiled using XeLaTeX28.
• The source code is highlighted thanks to Pygments29.
• The website is powered by quartz30.

More details on the tools we use and how this resource is made can be
found in dev. guide31.

Fonts

We use the URW Gothic32 and Hack33 (inspired by the DejaVu34 font)
fonts. Those fonts have been specially selected for their legibility and
lower impact on environment35.

Services

The source code and the website are graciously hosted and built by
github36.

Licence
This work is under Creative Commons Attribution 4.0 International37. Con-
cretely, this means that you are free to:

• Save, print, copy and redistribute the entirety of the resources pre-
sented here,

• Modify them as you see fit,

as long as you give proper credit and keep the same licence.

Please refer to our licence file38 for the detail of this licence.
26https://pandoc.org/
27https://github.com/DCsunset/pandoc-include
28https://tug.org/xetex/
29https://pygments.org/
30https://quartz.jzhao.xyz/
31dev_guide
32https://fontesk.com/gothic-typeface/
33https://sourcefoundry.org/hack/
34https://sourcefoundry.org/hack/
35https://en.wikipedia.org/wiki/Century_Gothic#Printer_ink_usage
36https://github.com/
37https://creativecommons.org/licenses/by/4.0/
38https://github.com/princomp/princomp.github.io/blob/main/license.md

10

https://pandoc.org/
https://github.com/DCsunset/pandoc-include
https://tug.org/xetex/
https://pygments.org/
https://quartz.jzhao.xyz/
dev_guide
https://fontesk.com/gothic-typeface/
https://sourcefoundry.org/hack/
https://sourcefoundry.org/hack/
https://en.wikipedia.org/wiki/Century_Gothic#Printer_ink_usage
https://github.com/
https://creativecommons.org/licenses/by/4.0/
https://github.com/princomp/princomp.github.io/blob/main/license.md

Contributing

How can I contribute?
If you are a student

We would like to hear your thoughts on this resource to understand how
to make it better for you and your fellow students. If you encounter a
mistake, run into an issue while using the resource, or find it missing some-
thing important, you can contribute by providing feedback in one of the
following ways:

• talk to your instructor about the issue
• talk to your section’s UCA about the issue
• leave feedback on this website on the page where you notice the

issue
• Open an issue39

• print the resource and identify the issue, then hand it to your instruc-
tor or UCA

If you have suggestions on how to make it better, we encourage you to
share those ideas too.

If you are an instructor

You will need to have a Github account40. Next contact any of the au-
thors41 of this resource over email, provide your Github username, and
request an invitation to be added to the instructors team.

If you are a UCA

You will need to have a Github account42. Next ask your course section
instructor to invite you to the 1301 UCAs team. Your instructor needs your
Github username to send you the invitation.

If you are an outside collaborator

When you have identified a mistake in this resource and want to notify the
authors, leave feedback on this website on the page where you notice
the issue or open an issue43 explaining the issue.

39https://github.com/princomp/princomp.github.io/issues/new/choose
40https://github.com/join
41credits#authors
42https://github.com/join
43https://github.com/princomp/princomp.github.io/issues/new/choose

11

https://github.com/princomp/princomp.github.io/issues/new/choose
https://github.com/join
credits#authors
https://github.com/join
https://github.com/princomp/princomp.github.io/issues/new/choose

If you want to make edits yourself, you can fork44 the source code, make
edits, then open a pull request45 for us to review.

Next steps for editors
If you are looking to edit this resource and making your first contribution,
read through the dev. guide46. It explains:

• how to locate different resources
• how to edit the resources
• how to label content

Following the dev. guide47 will help to ensure your edits meet the ex-
pected quality guidelines and can be integrated into the existing re-
source with ease.

Dev. Guide

This guide explains how this resource is organized, how it is built and de-
ployed, and how to maintain this resource. It is intended to be compre-
hensive, but should most likely be read only after having read our con-
tributing48 and UCA49 guides.

Resources Organization Overview
Folders and Files

The source code repository50’s main branch is organized as follows:

path description

.github/ github templates and
configuration for github actions

misc/ resources that need to be either
integrated into the resource, or

discarded
source/ source for the material

licence.md license file

44https://github.com/princomp/princomp.github.io/fork
45https://github.com/princomp/princomp.github.io/pulls
46dev_guide
47dev_guide
48https:/princomp.github.io/docs/about/contributing
49https:/princomp.github.io/docs/academic_life/uca_guide#editing-the-resources
50https://github.com/princomp/princomp.github.io

12

https://github.com/princomp/princomp.github.io/fork
https://github.com/princomp/princomp.github.io/pulls
dev_guide
dev_guide
https:/princomp.github.io/docs/about/contributing
https:/princomp.github.io/docs/academic_life/uca_guide#editing-the-resources
https://github.com/princomp/princomp.github.io

path description

readme.md presentation of the repository

The source/ folder contains the following:

path description

code/ code examples (snippets
and projects)

docs/ additional helpful
documentation

fonts/ the fonts (redistributed
with permission) used by

this resource
img/ images, sometimes with

their LaTeX source code
labs/ lab exercises

lectures/ lecture notes
slides/ slides

templates/ templates and filters used
for building this resource

vid/ video files
Makefile makefile used to compile

this resource
index.md website index page
order file used to specify the

order on the website’s
menu and the book

Building and Deploying

The content is built and deployed in two phases:

• Running make all in the source/ folder will create a content/
folder at root level containing:

– one .md file per .md file in the source/ folder (in the
same location: source/labs/If.md is compiled to con-
tent/labs/If.md), resulting from pandoc51’s conversion,

– one .pdf, .odt and .docx file per .md file (with the ex-
ception of the index.md files) in the source/ folder (in the
same location: source/labs/If.md is compiled to con-
tent/labs/If.pdf), resulting from pandoc52’s conversion,

51https://pandoc.org/
52https://pandoc.org/

13

https://pandoc.org/
https://pandoc.org/

– some files from the img/, slides/ and vid/ folders, copied
selectively (for example, only the .jpeg, .png, .pdf, .svg and
.gif files are copied from the img/ folder),

– the .woff and .woff2 files copied from the fonts/ folders,
– a code/projects/ folder containing, for each Program.cs

file contained in a source/code/projects/x/y, a x.zip
archive containing a C# project including Program.cs along
with some (optional) class file,

– a web-order.ts file, compiled from the source/order file,
that fixes the order used by the website in the menu,

– a book.html, a book.pdf, a book.html and a book.docx file
resulting from pandoc53’s conversion of the .md files contained
in the SOURCE_BOOK’s makefile variable (containing all the .md
files in the source/docs/and source/lectures/, in the order
fixed by the order file).

• Then, using the files in the generated content/ folder, a
website is built using quartz54 and deployed to h t t p s : / / p r
i n c o m p . g i t h u b . i o /. This is achieved mainly thanks to the
.github/workflows/build_and_deploy.yaml file and github’s
actions55.

Tools, Briefly

This resource is mainly developed and powered using

• git56

• pandoc57

• make58

• python59

• quartz60,
• github’s actions61.

But note that knowing git and markdown are enough to contribute on-
line through the github repository62.

While most of those tools are standard (with the exception of quartz, but
53https://pandoc.org/
54https://quartz.jzhao.xyz/
55https://docs.github.com/en/actions
56https://git-scm.com/
57https://pandoc.org/installing.html
58https://www.gnu.org/software/make/
59https://www.python.org
60https://quartz.jzhao.xyz/
61https://docs.github.com/en/actions
62https://github.com/princomp/princomp.github.io

14

https://princomp.github.io/
https://princomp.github.io/
https://pandoc.org/
https://quartz.jzhao.xyz/
https://docs.github.com/en/actions
https://git-scm.com/
https://pandoc.org/installing.html
https://www.gnu.org/software/make/
https://www.python.org
https://quartz.jzhao.xyz/
https://docs.github.com/en/actions
https://github.com/princomp/princomp.github.io

it relies itself on the standard Node63 and npm technologies), we acknowl-
edge that

1. It is challenging to understand that many different technologies,
2. We should strive to welcome contributions from collaborators not

familiar with them,
3. Our set-up is unique in some respects.

This guide tries to alleviate some challenges resulting from this overall
unique and diverse resource organization. For more details about our
tools, please refer to the Installing dependencies and Repository Mainte-
nance sections.

Locating Resources

To obtain the latest version of this resource, you can either

• visit the accompanying website princomp.github.io64,
• download the latest version of the built resource65,
• clone our repository66.

This resource is an extension of csci-1301.github.io/67, please refer to their
user guide68 for more information about it.

Editing Resources

If you are new to this project, first read through Contributing Guidelines69

to learn how you can contribute to the improvement of this resource, and
if applicable, how to join a contributing team.

Best practices for all forms of content

Inclusivity Follow the IT Inclusive Language Guide70 from the University
of Washington:

use gender-neutral terms; avoid ableist language; focus on
people not disabilities or circumstances; avoid generalizations
about people, regions, cultures and countries; and avoid

63https://nodejs.org/
64https://princomp.github.io
65https://github.com/princomp/princomp.github.io/releases/download/latest/release.

zip
66https://github.com/princomp/princomp.github.io/
67https://csci-1301.github.io/
68https://csci-1301.github.io/user_guide.html#locating-course-resources
69/contributing
70https://itconnect.uw.edu/guides-by-topic/identity-diversity- inclusion/inclusive-

language-guide/

15

https://nodejs.org/
https://princomp.github.io
https://github.com/princomp/princomp.github.io/releases/download/latest/release.zip
https://github.com/princomp/princomp.github.io/releases/download/latest/release.zip
https://github.com/princomp/princomp.github.io/
https://csci-1301.github.io/
https://csci-1301.github.io/user_guide.html#locating-course-resources
/contributing
https://itconnect.uw.edu/guides-by-topic/identity-diversity-inclusion/inclusive-language-guide/
https://itconnect.uw.edu/guides-by-topic/identity-diversity-inclusion/inclusive-language-guide/

slang, idioms, metaphors and other words with layers of
meaning and a negative history.

Typically, we recommend using

• “unethical hacker” instead of “black hat”,
• “main” instead of “master”,
• “blank space” instead of “white space”,
• “display on the screen” instead of “printing”, -etc.

In doubt, please start by referring to this list of problematic words and
phrases71.

Structure for accessibility

• All resources are titled
– title each markdown document by having one (and only one)

title at top level (that is, using #),
– use subtitles when appropriate,
– title all images with a descriptive title and add an alt-tag,
– title all code blocks in labs and lecture notes.

• All resources are labelled when applicable, see content labelling
for more details

Resources to assess accessibility:

• Affordable Learning Georgia’s guide72

• Specific Review Standards from the QM Higher Education Rubric73

• UWG Accessibility Services’s guide74

• Penn State’s recommendations for alternative text and complex
images.75

• WebAim Color Contrast Checker76

• WebAIM (Web Accessibility In Mind)77

Markdown Text documents are written using standard markdown syn-
tax78. More precisely,

71https://itconnect.uw.edu/guides-by-topic/identity-diversity- inclusion/inclusive-
language-guide/#list

72https://alg.manifoldapp.org/projects/oer-accessibility-series-and-rubric
73https://www.qualitymatters.org/sites/default/files/PDFs/StandardsfromtheQMHigher

EducationRubric.pdf
74https://docs.google.com/document/d/16Ri1XgaXiGx28ooO-zRvYPraV3Aq3F5ZNJYbV

DGVnEA/edit?ts=57b4c82d#
75https://accessibility.psu.edu/images/
76https://webaim.org/resources/contrastchecker/
77https://webaim.org/
78https://commonmark.org/

16

https://itconnect.uw.edu/guides-by-topic/identity-diversity-inclusion/inclusive-language-guide/#list
https://itconnect.uw.edu/guides-by-topic/identity-diversity-inclusion/inclusive-language-guide/#list
https://alg.manifoldapp.org/projects/oer-accessibility-series-and-rubric
https://www.qualitymatters.org/sites/default/files/PDFs/StandardsfromtheQMHigherEducationRubric.pdf
https://www.qualitymatters.org/sites/default/files/PDFs/StandardsfromtheQMHigherEducationRubric.pdf
https://docs.google.com/document/d/16Ri1XgaXiGx28ooO-zRvYPraV3Aq3F5ZNJYbVDGVnEA/edit?ts=57b4c82d#
https://docs.google.com/document/d/16Ri1XgaXiGx28ooO-zRvYPraV3Aq3F5ZNJYbVDGVnEA/edit?ts=57b4c82d#
https://accessibility.psu.edu/images/
https://webaim.org/resources/contrastchecker/
https://webaim.org/
https://commonmark.org/

• in the markdown+emoji format, that is, in pandoc’s markdown79,
using the emoji80 extension81),

• using the pandoc-include82 filter,
• and a custom83 filter that sets all the code blocks84, or all the code

block and inline code85’s syntax highlighting to C# by default.

Images

• Images belong in source/img/ directory.
• Explain the image in written form.
• Title each image, this will create a URL for the image and enables

linking to it.
• Always include a descriptive alt tag for accessibility.
• Do not rely on everyone seeing colors the same way86.
• Prefer scalable vector images.
• When referring to images in markdown, use path from root, see ex-

ample below

Syntax example. The quoted text is the alt tag and in parentheses is path
to file

!["image of visual studio IDE"](./img/vs_ide.jpg){ width=80% }

The { width=80% } attribute is optional.

Images generated by LaTeX Some images are generated by LaTeX: the
.tex file is what is used to generate the .pdf file, and then pdf2svg con-
verts the .pdf into a .svg file. The .svg files are used in the .html, .odt
and .docx documents, while the .pdf is used in the .pdf documents.
The resulting images are added to the repository so that there is no need
to re-compile them every time, or to set-up LaTeX and latexmk on each
system.

UML class diagrams The UML class diagrams are created using Mer-
maid87 and located in source/uml. To create a new class diagram, say
for a Documentation class, follow those steps:

79https://pandoc.org/MANUAL.html#pandocs-markdown
80https://pandoc.org/MANUAL.html#extension-emoji
81https://pandoc.org/MANUAL.html#extensions
82https://github.com/DCsunset/pandoc-include
83https://github.com/princomp/princomp.github.io/tree/main/source/templates/filters
84https://github.com/princomp/princomp.github.io/blob/main/source/templates/filter

s/default-code-class-block.lua
85https://github.com/princomp/princomp.github.io/blob/main/source/templates/filter

s/default-code-class-block-inline.lua
86https://www.wikiwand.com/en/Color_blindness
87https://mermaid.js.org/

17

https://pandoc.org/MANUAL.html#pandocs-markdown
https://pandoc.org/MANUAL.html#extension-emoji
https://pandoc.org/MANUAL.html#extensions
https://github.com/DCsunset/pandoc-include
https://github.com/princomp/princomp.github.io/tree/main/source/templates/filters
https://github.com/princomp/princomp.github.io/blob/main/source/templates/filters/default-code-class-block.lua
https://github.com/princomp/princomp.github.io/blob/main/source/templates/filters/default-code-class-block.lua
https://github.com/princomp/princomp.github.io/blob/main/source/templates/filters/default-code-class-block-inline.lua
https://github.com/princomp/princomp.github.io/blob/main/source/templates/filters/default-code-class-block-inline.lua
https://www.wikiwand.com/en/Color_blindness
https://mermaid.js.org/

1. Create a Documentation.txt file in source/uml that follows the
syntax for class diagrams88 (note that there is no need to add
classDiagram at the beginning, it will be done automatically),

2. Run (from the source/ folder) make uml/Documentation.md,
3. Integrate the resulting drawing, properly captioned and with

a link to your Documentation.txt file (for visually impaired
readers, or to facilitate automatic processing) using !include
uml/Documentation.md.

Source code

• Source code programs belong in source/code/ directory.
• The code included in this directory should either be:

– Placed in the snippets/ sub-folder, and be a complete pro-
gram.

– Placed in the projects/<solution>/<project>/ sub-folder,
and contains a Program.cs file:
∗ Go to source/code/projets/,
∗ Create a subdirectory with the name of the solution you

would like to use,
∗ Create a subdirectory with the name of the project you

would like to use,
∗ Create a file called Program.cs in
source/code/projects/<solution>/<project>/Program.cs
∗ If you want to add additional classes, add them in

code/projects/<solution>/<project>/<Class>.cs
files.

Do not add solution (sln) or project (csproj) files: they
will be created automatically using the project and solu-
tion’s name you specified (and a makefile rule similar to
this one89), if multiple classes are present they will all be
linked, and the resulting archive will be hosted at con-
tent/code/projects/<solution>.zip.

• Source code that is faulty, partial, or does not terminate can be
included in markdown as inline code block.

Code snippets can be included in markdown documents using pandoc-
include90 filter:

```text
!include code/sample.cs
```

88https://mermaid.js.org/syntax/classDiagram.html
89https://github.com/csci-1301/C-Sharp-project-maker
90https://github.com/DCsunset/pandoc-include

18

https://mermaid.js.org/syntax/classDiagram.html
https://github.com/csci-1301/C-Sharp-project-maker
https://github.com/DCsunset/pandoc-include

Note that for an unknown reason91, no special characters (such as _)
should be used in the filenames.

• Title each source code block included in markdown, this will create
a URL for the code block and enables linking to it.

• code blocks are by default annotated as csharp
– syntax highlighting is applied automatically at build time

based on the code block language
– to use a language other than C#, specify the language locally

in the specific code block:
• only include code in text form such that it can be copy-pasted for

reuse
• make sure to include blank lines before and after code blocks, since

the absence of these can cause the code block to display incor-
rectly.

Creating new lectures

Lecture notes belong to the source/lectures/ directory.

To create a new lecture, for instance on exception handling:

1. Create a directory corresponding to the theme if it does not exist
already (say, exceptions), under source/lectures/ directory

• Follow the existing pattern for naming convention which is low-
ercase and separation by underscores.

• At the root of this folder, create an index.md file (so, at
source/lectures/exceptions/index.md) containing

title: Desired Title for Theme

so that your theme will be labeled “Desired Title for Theme” on
the website’s menu (see content labelling on how to further
label it).

2. Under the directory corresponding to your theme, create a file
named after the lecture’s title (e.g., exception-handling.md) in
lowercase. Write lecture notes in this file using markdown.

3. Edit the source/order file and insert where appropriate

• ./lectures/exception/ (if you created a folder called ex-
ception),

91https://github.com/DCsunset/pandoc-include/issues/45

19

https://github.com/DCsunset/pandoc-include/issues/45

• ./lectures/exception/exception-handling.md (which
must be between ./lectures/exception/ and the next
./lectures/xyz/ folder).

This last step will insure that your lecture is 1. included in the book,
2. sorted correctly on the website’s menu (the default ordering is
alphabetical).

If the lecture does not appear, here are the steps for troubleshooting the
issue:

1. Check that after committing changes, the automated build has
completed successfully, by checking the workflows92,

2. The newly created lecture is under the subdirectory you picked in
the source/lectures/ directory93,

3. The .md file exists,
4. Hard refresh the browser page if viewing the resources website

Known issues: When concatenating files pandoc may or may not in-
clude empty spaces between individual files. This may cause the subse-
quent lecture title to not appear in the generated book. For this reason,
each lecture file should end with a newline.

Creating new labs

The process is very close to the process to create a new lecture, with the
following exceptions:

• All lab resources are located under source/labs/ directory, at root
level (there is no “theme” sub-folder).

• You do not need to edit the source/order file, since labs are not
included in the book nor sorted on the website.

Additionally, remember to:

1. Choose a short and unique name that describes the lab (say,
StringMethods.md)

• follow the existing convention for naming,
• do not number labs or make assumptions about numbering

because another instructor may not follow the exact same lab
order,

• make the lab standalone to support alternative ordering
(avoid assumptions about what was done “last time”),

• do not make assumptions about student using specific OS, in-
clude instructions for all supported options (Windows, MacOS,
Linux),

92https://github.com/princomp/princomp.github.io/actions
93https://github.com/princomp/princomp.github.io/tree/main/source/lectures

20

https://github.com/princomp/princomp.github.io/actions
https://github.com/princomp/princomp.github.io/tree/main/source/lectures

• do not make assumptions about student using Visual Studio,
refer to IDE instead.

2. (optional) You can add a downloadable project (use a link of the
form [the Rectangle project](./code/projects/Rectangle.zip))
or include snippets of code by following our instructions to add
source code.

Using this established build system generates labs that are cross-platform
(Windows, MacOS, Linux) and work on different IDEs (this process is doc-
umented in the corresponding repository94). Do not attempt to create
labs locally as that approach does not have the same cross-platform
guarantee.

Content Labelling

Technically Quartz95 support a powerful tagging system96 which should
be leveraged. Markdown files can contain at their very top a YAML meta-
data block97 containing, e.g.

tags:
- Resource

to “tag” this resource with “Resource” so that it will appears in the tag
listing98. To include multiple tags, simply make a list:

tags:
- Resource
- Guide

Conceptually We will follow the guidance provided on this page99:

• Use as Few Tags as Possible
• Limit Yourself to a Self-Defined Set of Tags
• Tags Within Your Set Must Not Overlap
• By Convention, Tags Are in Plural
• Tags Lower Case
• Tags Are Single Words

94https://github.com/csci-1301/C-Sharp-project-maker
95https://quartz.jzhao.xyz/authoring-content#syntax
96https://quartz.jzhao.xyz/features/folder-and-tag-listings#tag-listings
97https://pandoc.org/MANUAL.html#extension-yaml_metadata_block
98https://princomp.github.io/tags/Guide
99https://karl-voit.at/2022/01/29/How-to-Use-Tags/

21

https://github.com/csci-1301/C-Sharp-project-maker
https://quartz.jzhao.xyz/authoring-content#syntax
https://quartz.jzhao.xyz/features/folder-and-tag-listings#tag-listings
https://pandoc.org/MANUAL.html#extension-yaml_metadata_block
https://princomp.github.io/tags/Guide
https://karl-voit.at/2022/01/29/How-to-Use-Tags/

• Keep Tags on a General Level
• Omit Tags That Are Obvious
• Use One Tag Language
• Explain Your Tags

Styling and Templating
Templating files are under source/templates/ directory. Templates di-
rectory contain layout files that are applied by pandoc when resources
are built: note that the website’s style uses a completely different mech-
anism.

For maintainability reasons it is preferable to apply templates during build
time. This strategy makes it easy to edit templates later and apply those
changes across all resources. Avoid applying templating to individual
resource files whenever possible.

Currently templates directory contains the following:

• docx/ - contains template used to produce .docx files (this tem-
plate is not used yet, for size issues100).

• filters/ - contains pandoc filters for annotating code blocks, con-
figured to default to C#, which then allows applying syntax highlight-
ing to all code block.

• html/ - contains template used to produce only the book.html file
(to edit the style of the website, refer to editing website)

• latex - contains templates used to produce .pdf files,
• docx/ - contains template used to produce .odt files.

Updating docx template

Note that this template is not used yet, for (among other) size issues101.

To edit this template, start by obtaining the default template file:

pandoc -o custom-reference.docx --print-default-data-file
reference.docx↪

Then, open reference.docx, and, following loosely this tutorial102, do:

• Click pretty much anywhere, and right-click on the highlighted style
(displayed if you are under “Home”, you may need to scroll down
the styles),

• Change the font for everything but the source code,
100https://github.com/csci-1301/csci-1301.github.io/issues/156
101https://github.com/csci-1301/csci-1301.github.io/issues/156
102https://support.microsoft.com/en-us/office/customize-or-create-new-styles-

d38d6e47-f6fc-48eb-a607-1eb120dec563?ui=en-us&rs=en-us&ad=us

22

https://github.com/csci-1301/csci-1301.github.io/issues/156
https://github.com/csci-1301/csci-1301.github.io/issues/156
https://support.microsoft.com/en-us/office/customize-or-create-new-styles-d38d6e47-f6fc-48eb-a607-1eb120dec563?ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/customize-or-create-new-styles-d38d6e47-f6fc-48eb-a607-1eb120dec563?ui=en-us&rs=en-us&ad=us

• Click on the “Block code”, then right-click on the highlighted style,
and select the font for the source code,

• The font for “Verbatim Char” was also changed, but I am not sure
if this has an impact,

• Make sure the fonts are embedded103,
• Save and close the document.

This was inspired by this post104 but does not seem to work properly.

Updating odt template

First, output the default template file:

pandoc -o custom-reference.odt --print-default-data-file
reference.odt↪

Then, open reference.odt, and, following loosely this tutorial105, do:

• Click on View, then Styles.
• Right-click on “Preformatted Text”, click on “Modify…”, and then

select the desired font family for source code.
• In the dialog or sidebar which opens make sure the button in the

top panel marked with ¶ is highlighted (it is very subtle).
• In the menu at the bottom of the dialog/sidebar choose Applied

Styles. Only “Default Paragraph Style” and “Footer” should appear.
• Right-click on “Default Paragraph Style”, click on “Modify…”, and

then select the desired font family for the rest of the text.
• Then, highlight the A next to ¶.
• Right-click on “Source_Text”, click on “Modify…”, and then select

the desired font family for source code.
• Click on File, then Properties, then on the Font tab, click on “Embed

fonts in the document”.
• Save and close the document.

Building locally
It is generally not necessary to build this resource locally unless the intent
is to preview templating changes or to make changes to build scripts. For
the purposes of editing content, it is sufficient to make edits to markdown
files and commit those changes.

103https://support.microsoft.com/en-us/office/benefits-of-embedding-custom-fonts-
cb3982aa-ea76-4323-b008-86670f222dbc

104https://stackoverflow.com/a/70513063
105https://github.com/jgm/pandoc/wiki/Defining-custom-DOCX-styles-in-LibreOffice-

(and-Word)#libreoffice

23

https://support.microsoft.com/en-us/office/benefits-of-embedding-custom-fonts-cb3982aa-ea76-4323-b008-86670f222dbc
https://support.microsoft.com/en-us/office/benefits-of-embedding-custom-fonts-cb3982aa-ea76-4323-b008-86670f222dbc
https://stackoverflow.com/a/70513063
https://github.com/jgm/pandoc/wiki/Defining-custom-DOCX-styles-in-LibreOffice-(and-Word)#libreoffice
https://github.com/jgm/pandoc/wiki/Defining-custom-DOCX-styles-in-LibreOffice-(and-Word)#libreoffice

Installing dependencies To find the current list of dependencies
needed to build this resource, refer to the build and deploy script install
section106. The exact installation steps vary depending on your local
operating system.

In general the following dependencies are needed:

• pandoc107

• texlive108

• make109 and other standard unix utilities (such as sed or wget, all
included in the Windows Subsystem for Linux110),

• python 3.+111

• packages and filters: Pygments112, pandoc-include113, texlive-
xetex114, texlive-latex-extra, lmodern, librsvg2-bin115

• symbola font

For this later, note that starting with version 11116, the licence is too restric-
tive for non-personal use. As a consequence, users are asked to make
sure they do not use a version greater than v.10.24, which is “free for any
use” and archived on-line117 (curious users can also refer to the related
webpage118). Note that installing this dependency using a unix-like pack-
age manager will result in installing a version of the font that is free to use
in any context119.

You can make sure you are currently using the latest version of panflute
by running

pip install -U panflute

This is needed if running a recent version of pandoc (as of pandoc 3.1.6.1
at least).

106https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build
_and_deploy.yaml

107https://pandoc.org/installing.html
108https://www.tug.org/texlive/
109https://www.gnu.org/software/make/
110https://learn.microsoft.com/en-us/windows/wsl/install
111https://www.python.org/
112https://pygments.org/download/
113https://github.com/DCsunset/pandoc-include#installation
114https://tug.org/xetex/
115https://askubuntu.com/a/31446
116http://web.archive.org/web/20181228102842/http://users.teilar.gr/%7Eg1951d/Symb

ola.pdf
117http://web.archive.org/web/20180307012615/http://users.teilar.gr/~g1951d/Symbola.

zip
118http://web.archive.org/web/20180307012615/http://users.teilar.gr/~g1951d/
119https://metadata.ftp-master.debian.org/changelogs//main/t/ttf-ancient-fonts/ttf-

ancient-fonts_2.60-1.1_copyright

24

https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy.yaml
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy.yaml
https://pandoc.org/installing.html
https://www.tug.org/texlive/
https://www.gnu.org/software/make/
https://learn.microsoft.com/en-us/windows/wsl/install
https://www.python.org/
https://pygments.org/download/
https://github.com/DCsunset/pandoc-include#installation
https://tug.org/xetex/
https://askubuntu.com/a/31446
http://web.archive.org/web/20181228102842/http://users.teilar.gr/%7Eg1951d/Symbola.pdf
http://web.archive.org/web/20181228102842/http://users.teilar.gr/%7Eg1951d/Symbola.pdf
http://web.archive.org/web/20180307012615/http://users.teilar.gr/~g1951d/Symbola.zip
http://web.archive.org/web/20180307012615/http://users.teilar.gr/~g1951d/Symbola.zip
http://web.archive.org/web/20180307012615/http://users.teilar.gr/~g1951d/
https://metadata.ftp-master.debian.org/changelogs//main/t/ttf-ancient-fonts/ttf-ancient-fonts_2.60-1.1_copyright
https://metadata.ftp-master.debian.org/changelogs//main/t/ttf-ancient-fonts/ttf-ancient-fonts_2.60-1.1_copyright

Running the build

!△ Warning

Running make all can be very resource-incentive and may render
your system unstable. Read this section entirely before running any
command.

Testing the installation After installing all dependencies, from the
source/ folder, run:

make

to display a list of useful rules.

It is recommended to first run a command building simple documents or
copying files to test your installation, such as

make ../content/docs/about/credits.md
make ../content/docs/about/credits.pdf
make ../content/docs/about/credits.odt
make ../content/docs/about/credits.docx
make ../content/code/projects/Rectangle.zip
make ../content/web-order.ts
make ../content/img/create_project_monodevelop.png
make ../content/fonts/hack/hack-italic-subset.woff

If this was successful, you can compile the resources needed for the web-
site using

make build-light

Building all resources You can run

make all

to create and populate the content/ folder at root level with all the
resources compiled.

If you want to speed-up the compilation time, you can run

make fetch

which will fetch the latest build output, extract it and populate the con-
tent/ folder using its content. Due to make’s unique feature120 only the
files whose source was edited will be re-created when executing make
all the next time, hence saving a lot of time.

120https://makefiletutorial.com/

25

https://makefiletutorial.com/

Website
Editing the website

The website https://princomp.github.io/ is built from the .md files con-
tained in the content/ folder using a dedicated branch121 of quartz122.
To edit the layout, style, or other features such as the footer, please start
by checking out the quartz branch (using git checkout quartz), and
then

• Refer to quartz’s website123, repository124 and general community,
• Knowing that multiple edits already tweaked its style.

A couple of indications about the edits made to quartz:

• The favicon at quartz/static/, and have been generated using
https://realfavicongenerator.net/.

• The order in the menu is constructed using the content/web-
order.ts file, itself generated from the source/order file in the
main branch: refer to the makefile (again, in the main branch) for
explanations on how this file is created, to the quartz documenta-
tion125 for the main inspiration, and to the quartz.layout.ts and
sortFn.ts files for the concrete implementation. If you change
the order, setting

useSavedState: true, // To debug the explorer, change to "false" (this way, the menu is not cached / permanent),

to false in the quartz/components/Explorer.tsx file may help
in refreshing the menu more easily. - Other files edited or created
include: - quartz/components/AlternativeFormats.tsx and
quartz/components/styles/alternativeFormats.scss to list alter-
native formats at the top of the page, - quartz/components/Comments.tsx,
quartz/components/scripts/darkmode.inline.ts, quartz/components/Footer.tsx
and quartz/components/styles/listPage.scss to customize the
footer and add a link to our repository feedback (while following the
selected style126), - quartz/styles/base.scss to load a different set of
fonts, - quartz/components/Explorer.tsx and quartz.layout.ts
to tweak the menu and layout, - quartz.config.ts to set meta-data
about the website, - quartz/components/pages/404.tsx to customize
the 404 error message, - quartz/plugins/emitters/assets.ts to
emit the .md files (they are not available by default), - quartz/components/index.ts
to tie it all together.

121https://github.com/princomp/princomp.github.io/tree/quartz
122https://quartz.jzhao.xyz/
123https://quartz.jzhao.xyz/
124https://github.com/jackyzha0/quartz
125https://quartz.jzhao.xyz/features/explorer#use-sort-with-pre-defined-sort-order
126https://github.com/jackyzha0/quartz/issues/1161

26

https://princomp.github.io/
https://realfavicongenerator.net/
https://github.com/princomp/princomp.github.io/tree/quartz
https://quartz.jzhao.xyz/
https://quartz.jzhao.xyz/
https://github.com/jackyzha0/quartz
https://quartz.jzhao.xyz/features/explorer#use-sort-with-pre-defined-sort-order
https://github.com/jackyzha0/quartz/issues/1161

Refer to Generate the git patch for instruction on how to generate a
patch containing all the edits performed to our local copy of quartz.

Deploying locally the website

Follow closely those steps:

• Build the resource locally (note that running make build-light is
enough to deploy the website).

• Move to the quartz branch by running

git checkout quartz

Note that the content/ folder is still here, but that the source is ab-
sent from this branch: only files related to quartz are committed in
this branch.

• Rename the content/index.md file (this is due to an annoying
bug127) by running

mv content/index.md content/index_b.md

• Follow quartz’s instructions128:

– If you don’t have at least Node v18.14 and npm v9.3.1, install
node129 and npm130 (npm is probably installed automatically
when you install node),

– Run the following commands at root level (do not enter the
quartz/ folder):

npm i
npx quartz create

for this last command, select

│ ● Empty Quartz

then,

│ ● Treat links as shortest path ((default))

– If the previous command succeeded, run

mv content/index_b.md content/index.md

to restore our index file, then

npx quartz build --serve

127https://github.com/jackyzha0/quartz/issues/1175
128https://quartz.jzhao.xyz/#-get-started
129https://nodejs.org/en/download/package-manager
130https://github.com/npm/cli?tab=readme-ov-file#installation

27

https://github.com/jackyzha0/quartz/issues/1175
https://quartz.jzhao.xyz/#-get-started
https://nodejs.org/en/download/package-manager
https://github.com/npm/cli?tab=readme-ov-file#installation

to start the server. Then, navigate to localhost:8080/ to see the
website deployed locally.

Updating quartz

Our local copy of quartz, in the quartz branch131, is “frozen” in the sense
that it corresponds to the development of quartz at a point of time. It is
possible to

1. Save the edits made to our local copy (as a git patch132),
2. Pull the current version of quartz in a different branch (called

quartz-update),
3. Apply our edits to this updated version of quartz,
4. Replace the quartz branch with the quartz-update branch to

deploy the updated version of quartz with our edits.

This process is not without risks and requires to be able to deploy locally
the website to test it before deploying it. The following guide was inspired
by this discussion133.

Generate the git patch The first step is to save as a git patch all the
edits that have been made on our local copy of quartz since it was last
updated.

• Make sure you are in the quartz branch and that it is up-to-date.

• Locate the commit idof the last commit performed by quartz main-
tainer. A way of achieving this is to look for “PCP” in the commit
messages, using

git rev-parse :/PCP

and then to look for the commit id of the commit that came
before it. For instance, if the previous command returns
b9c0a47fcc6fd50977a5cd60f4851e71fe5400f2, then the
command

git show b9c0a47fcc6fd50977a5cd60f4851e71fe5400f2^1

will return information about the commit that came before that last
commit: we will assume its id is 81a4e202362f42a82baa9df2b6b91a774098740b
in the following.

Visual inspection using github’s interface134 or a program such as
131https://github.com/princomp/princomp.github.io/tree/quartz
132https://git-scm.com/docs/git-apply
133https://github.com/jackyzha0/quartz/issues/1145
134https://github.com/princomp/princomp.github.io/commits/quartz/

28

https://github.com/princomp/princomp.github.io/tree/quartz
https://git-scm.com/docs/git-apply
https://github.com/jackyzha0/quartz/issues/1145
https://github.com/princomp/princomp.github.io/commits/quartz/

gitk135 can facilitate this process. Note that using the --short op-
tion will give the short version of the id, which may be easier to
compare, and is used on github’s interface.

• Use the id previously obtained to generate a patch containing all
the changes made since that commit:

git diff-index
81a4e202362f42a82baa9df2b6b91a774098740b --binary
> pcp_quartz_patch

↪
↪

The --binary option insures that any file created will be included
in the patch: as a result, this file can heavy.

• Make sure you save this pcp_quartz_patch file but do not commit
it to the repository.

Clone the latest version of quartz Execute the following commands:

git remote add quartz
https://github.com/jackyzha0/quartz.git↪

git fetch quartz
git checkout -b quartz-update quartz/v4

where quartz-update is the name we use for our branch, and
quartz/v4 is the name of the branch in the quartz repository we want
to copy.

Apply the git patch Make sure you are in the quartz-update branch
by executing

git rev-parse --abbrev-ref HEAD

Then, copy your pcp_quartz_patch file at the root level, and check if
the patch is applicable, by executing

git apply --ignore-space-change --ignore-whitespace
--check --reject pcp_quartz_patch↪

Some sections of the patch may be rejected: make sure you take note
of which file will need to be merged by hand. Finally, apply the patch,
using

git apply --ignore-space-change --ignore-whitespace
--reject pcp_quartz_patch↪

Look for the .rej files: they will contain the edited version of a file that
you will need to merge manually with the updated version of the same
file from quartz’s update. Once you are done manually merging, test

135https://git-scm.com/docs/gitk

29

https://git-scm.com/docs/gitk

your updated version by deploying locally the website and making sure
that quartz does not return any error. If everything looks ok, add all the
new files and commit the edits using a message containing the “PCP”
string (to facilitate future generation of git patch), and push, using for
example:

• First, use bash git add --all -n . to list all the files
you are about to add: make sure you are not adding files from the
content/ folder, for instance. If everything looks fine, proceed to
the next step.

• Then, actually add the files, commit, and push, using:

git add --all
git commit -a -m "Applying previous PCP patch."
git push origin quartz-update

Update the branch If you were able to fix all the conflicts and to check
that the website could still be deployed locally, then overwrite the
quartz branch with the quartz-update branch, by executing136:

Make sure your working tree is in a clean state
git status

Check out the branch you want to change, e.g.
some-branch↪

git checkout quartz

Reset that branch to some other branch/commit, e.g.
target-branch↪

git reset --hard quartz-update

Repository Maintenance
This repository uses following tools and technologies:

• git - version control
• Github - to make source code available on the web
• markdown, LaTeX - for writing the resources
• pandoc - for converting documents to various output formats
• make - for specifying how to build this resource
• github actions - to automatically build the resource
• github pages - to serve the accompanying website
• additional packages for specific tasks: texlive, Pygments, pandoc

filters, lua filter137, etc.
136https://www.reddit.com/r/git/comments/bqx85v/comment/eo8j4zh
137https://github.com/jgm/pandoc/issues/2104

30

https://www.reddit.com/r/git/comments/bqx85v/comment/eo8j4zh
https://github.com/jgm/pandoc/issues/2104

• fonts-symbola - to produce the emoji and other symbols in the pdf
document.

• utteranc.es138 - for feedback through website
• csharpier139 - to tidy the C## source code

Build outputs

The resource material is organized into specific directories inside the
source/ folder. These resources are then compiled into templated
documents in various formats using pandoc140. The makefile explains
the exact steps applied to each type of resource.

Github actions

This resource is built automatically every time changes concerning files
in the source/ folder are committed to the main branch of the reposi-
tory. This is configured to run on Github actions141. The workflow142 that
is automatically triggered has two jobs: one to build the resource, and
one to deploy it.

Currently Github actions offers unlimited free build minutes for public
repositories (and 2000 min/mo. for private repositories, should we ever
need them), which hopefully continues in perpetuity (if it does not there
are other alternative services). Going with one specific CI service over
another is simply a matter of preference.

Following a successful build, the build script will automatically deploy
the generated resources to an accompanying website hosted on github
pages143.

Fetch and No Fetch Versions There is a second workflow144 that is iden-
tical to the first one with one important exception: to speed up compila-
tion, build_and_deploy.yaml uses make fetch to speed up compila-
tion time by re-downloading the latest build output, and then compiling
only the required files. This can sometimes complicate the propagation
of changes, typically if a template is modified (as this does not triggers a
re-compilation of the files using it currently).

138https://utteranc.es/
139https://github.com/belav/csharpier
140https://pandoc.org/MANUAL.html
141https://github.com/features/actions
142https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build

_and_deploy.yaml
143https://pages.github.com/
144https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build

_and_deploy_no_fetch.yaml

31

https://utteranc.es/
https://github.com/belav/csharpier
https://pandoc.org/MANUAL.html
https://github.com/features/actions
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy.yaml
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy.yaml
https://pages.github.com/
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy_no_fetch.yaml
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy_no_fetch.yaml

The build_and_deploy_no_fetch.yaml145 can be triggered manually146 to
force a “fresh” remote compilation.

Creating releases

Currently a github action is setup to do the following: whenever a new
commit is made to the main branch, the action will build the resource
and add the generated resources as a pre-release147 and tag them as
“latest”148. If a subsequent commit occurs it will overwrite the previous
latest files and become the new latest version. This cycle continues until
maintainers are ready to make a versioned release (or “package”).

Making a versioned release is done as follows:

1. Go to repository releases149

2. Choose latest, which contains the files of the latest build
3. Edit this release, giving it a semantic name and a version, such as

v1.0.0. Name and version can be the same. (cf. semantic version-
ing150)

4. Enter release notes to explain what changed since last release
5. Uncheck “This is a pre-release”
6. Check “Set as the latest release”
7. Update release

Following these steps will generate a new, versioned release. The ver-
sioned releases will be manually uploaded to and archived on galileo.

Once this is done, remember to create the next pre-release:

1. Go to the repository releases151.
2. Click on “Draft a new release”.
3. Pick the tag “Latest”.
4. Click on “Generate release notes”
5. Check “This is a pre-release”
6. Click on “Publish release”

145https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build
_and_deploy_no_fetch.yaml

146https://github.com/princomp/princomp.github.io/actions/workflows/build_and_dep
loy_no_fetch.yaml

147https://github.com/princomp/princomp.github.io/releases
148https://github.com/princomp/princomp.github.io/releases/tag/latest
149https://github.com/princomp/princomp.github.io/releases
150https://semver.org/
151https://github.com/princomp/princomp.github.io/releases

32

https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy_no_fetch.yaml
https://github.com/princomp/princomp.github.io/blob/main/.github/workflows/build_and_deploy_no_fetch.yaml
https://github.com/princomp/princomp.github.io/actions/workflows/build_and_deploy_no_fetch.yaml
https://github.com/princomp/princomp.github.io/actions/workflows/build_and_deploy_no_fetch.yaml
https://github.com/princomp/princomp.github.io/releases
https://github.com/princomp/princomp.github.io/releases/tag/latest
https://github.com/princomp/princomp.github.io/releases
https://semver.org/
https://github.com/princomp/princomp.github.io/releases

Maintaining repository feedback

Resource users can submit feedback about the resource through various
means, one of which is leaving comments on the website. This feature is
enabled by utteranc.es152, and for now those repositories are hosted by
the csci-1301 github organization153 (this may change).

To manage user feedback over time, a semester-specific repository is cre-
ated for issues only. This must be a public repository and located under
the same organization as the resources repository. utteranc.es widget is
configured to point to this repository. After a semester is over, this feed-
back repository will be archived, and a new one created for the next
semester. This will simultaneously archive all older issues and reset the
feedback across website pages.

Migrating feedback repository The steps for migrating feedback target
repository are as follows:

1. Create a new public repository under csci-1301 github organiza-
tion154. Follow the established naming convention, and leave all
the options except for visibility (which needs to be set to public) by
default.

2. Go to repository Issues (make sure issues is enabled in repository set-
tings)

3. Create a new label whose label name is comment (to match widget
configuration as indicated in quartz/components/Footer.tsx, in
the quartz branch)

4. Go to Organization Settings > Installed GitHub Apps155

5. Choose “utterances” > “configure”

6. Under “Repository access” > “Only select repositories”

• select the repository created in step 1.
• remove the previous semester feedback repository

7. Save

8. In princomp/princomp.github.io/ repository, in the quartz
branch, open quartz/components/Footer.tsx

9. Update utteranc.es widget code to point to the new feedback
repository created in step 1.

152https://utteranc.es/
153https://github.com/csci-1301
154https://github.com/csci-1301
155https://github.com/organizations/csci-1301/settings/installations

33

https://utteranc.es/
https://github.com/csci-1301
https://github.com/csci-1301
https://github.com/organizations/csci-1301/settings/installations

<script data-external="1"
src="https://utteranc.es/client.js"
repo="csci-1301/{REPOSITORY_NAME}"
label="comment" …>

</script>

10. Commit change to quartz/components/Footer.tsx

11. Make sure the feedback works after migration. If it does not, retrace
your steps.

12. Archive the earlier feedback repository in its settings.

Maintaining Instructors / G/UCA rights

This is handled by the csci-1301 github organization156 and docu-
mented at https://csci-1301.github.io/user_guide.html#maintaining-
instructors-guca-rights.

How to get Help

🛈 Info

This page is primarily targeted for Augusta University students.

This page lists resources for Augusta University students to receive help
with their course of studies, in general, for students of the School of Com-
puter and Cyber Sciences, and for this course in particular.

In General
Many resources are available to help you be a successful student:

• If you are food insecure, you are not alone157, and the Open Paws
Food Pantry158 will help you.

• For tutoring resources, consult the Academic Success Center159 (or
“ASC”). It can help you, among other things, in the areas of time
management, test preparation and study strategies.

156https://github.com/csci-1301
157https://www.wjbf.com/csra-news/nearly-36-percent-of-college-students-are-

hungry/
158https://www.augusta.edu/student-affairs/open-paws.php
159https://www.augusta.edu/academicsuccess/

34

https://csci-1301.github.io/user_guide.html#maintaining-instructors-guca-rights
https://csci-1301.github.io/user_guide.html#maintaining-instructors-guca-rights
https://github.com/csci-1301
https://www.wjbf.com/csra-news/nearly-36-percent-of-college-students-are-hungry/
https://www.wjbf.com/csra-news/nearly-36-percent-of-college-students-are-hungry/
https://www.augusta.edu/student-affairs/open-paws.php
https://www.augusta.edu/academicsuccess/

• Student Counseling & Psychological Services160 (or “SCAPS”) is here
to assist students with a variety of personal, developmental, and
mental health concerns.

• The Writing Center161 can help you with any written, oral, or multi-
media project.

• To get help with technologies, refer to our Instructional Technology
Support162 correspondent Sienna Sewell163.

• The Department of Multicultural Student Engagement (MSE)164 aims
to provide education, training, and programming to foster aware-
ness of diversity and inclusion among Augusta University students.
Their Multicultural Mentorship Program and African American Male
Initiative165 are excellent resources to receive additional help.

For Students of the School of Computer and Cyber Sciences
School of Computer and Cyber Sciences Tutoring Center

The School has a tutoring center that can be reached:

• On discord166,
• During their tutoring hours (hours posted on the door and on dis-

cord), in University Hall167 129.

ACM Club

The Augusta University chapter168 of the A.C.M169 is one of the univer-
sity’s best resources for Computer Science, Information Technology and
Cyber Security students. It provides a platform to network with other stu-
dents in similar majors, presenting countless opportunities to not only ex-
pand the people you know, but also a fantastic place to learn and ask
questions. To learn more, you can sign up for the newsletter, or attend
one of the subgroup meetings (meeting times and locations are listed on
the website170).

160https://www.augusta.edu/counseling/
161https://www.augusta.edu/cwe/
162https://www.augusta.edu/continuity/index.php
163https://spots.augusta.edu/sSewell/
164https://www.augusta.edu/multicultural/
165https://www.augusta.edu/multicultural/programming.php
166https://discord.gg/AYSw3UNKEh
167https://map.concept3d.com/?id=824#!m/268018
168https://spots.augusta.edu/cyberdefense
169https://www.acm.org/
170https://spots.augusta.edu/cyberdefense

35

https://www.augusta.edu/counseling/
https://www.augusta.edu/cwe/
https://www.augusta.edu/continuity/index.php
https://spots.augusta.edu/sSewell/
https://www.augusta.edu/multicultural/
https://www.augusta.edu/multicultural/programming.php
https://discord.gg/AYSw3UNKEh
https://map.concept3d.com/?id=824#!m/268018
https://spots.augusta.edu/cyberdefense
https://www.acm.org/
https://spots.augusta.edu/cyberdefense

Other Club Activities

The Augusta University Game Design Club and Girls Who Code College
Loop “will be continuing activities in full force this year”. Notifications for
upcoming activities will be shared in class alongside school-wide emails.

How to Ask a Question?
It may seems silly, but asking a question “the right way” may not always
be easy.

1. Once you’ve identified your issue, try again from scratch to see if
you missed a point.

2. Go over the instructions, and look in our resources171 for some mean-
ingful keywords.

3. Think about how you can describe your issue, what is the shortest
route to reproduce it.

4. If you are still facing difficulties, be detailed and clear about what
you think went wrong: if the question is related to computers, spec-
ify which operating system, what you have tried, the exact nature
of the error message, etc. Screenshots are not always the right way
to convey your question: try to be descriptive, and explain what
you tried. If you want to refer to a particular lab or lecture, open
the corresponding page, look for the closest title, hover over it, and
you should see a “§” symbol appears: click on it, you can now share
that link172 so that your interlocutor knows precisely what you are
talking about!

And, remember: your instructor(s) knows that you are a student and here
to learn, so you should never feel intimidated or assume that everyone
knows better than you: many students struggle in this class at times, and
you could actually do them all a favor by asking your instructor(s) to go
over a particular dimension that they may have overlooked or explained
poorly!

Commenting Using a Github Account
On this website, if you look below, you will see a box where you can com-
ment. This will require that you create a Github account173, which is free
and may serve multiple purpose if you intend to study, use, or contribute
to open-source projects. The comment can use the markdown syntax174

171https://github.com/princomp/princomp.github.io/search?q=ask+a+question
172https://www.wikihow.com/Copy-and-Paste-a-Link
173https://github.com/login
174https://commonmark.org/

36

https://github.com/princomp/princomp.github.io/search?q=ask+a+question
https://www.wikihow.com/Copy-and-Paste-a-Link
https://github.com/login
https://commonmark.org/

(exactly like this resource!), which is also used on websites like stackover-
flow175 and extremely popular!

Choosing Your Major

🛈 Info

This page is primarily targeted for Augusta University students.

Which degree is best for you?
Most universities offer both a Computer Science degree and an Infor-
mation Technology degree, and some universities even offer a Manage-
ment Information Systems degree. Here at Augusta Unversity176, we have
all three options for you:

• Computer Science177 (CS / CSCI),
• Information Technology178 (IT / AIST),
• and Cybersecurity179 (CYBR),

along with two unique diploma,

• Cybersecurity Engineering180,
• and Cyber Operations181.

While all of these degrees are high-quality and should place students on
a fast-track towards a successful career, students always ask the same
question, “Which degree is best for me?” The answer to this question
depends on the student, their career goals, and a variety of other factors.

Students even ask more specific questions:

• Which degree will give me the highest salary?
• Which degree is easiest?
• Which degree is hardest?
• Which degree has the most job opportunities?

These are all great questions! But before answering them, it is more im-
portant to have a basic understanding of the degree options.

175https://stackoverflow.com/editing-help
176https://www.augusta.edu/ccs/programs.php
177https://www.augusta.edu/ccs/bs-cs.php
178https://www.augusta.edu/ccs/bs-it.php
179https://www.augusta.edu/ccs/bs-it-cybersecurity.php
180https://www.augusta.edu/ccs/bs-cybersecurity-engineering.php
181https://www.augusta.edu/ccs/bs-cyber-ops.php

37

https://stackoverflow.com/editing-help
https://www.augusta.edu/ccs/programs.php
https://www.augusta.edu/ccs/bs-cs.php
https://www.augusta.edu/ccs/bs-it.php
https://www.augusta.edu/ccs/bs-it-cybersecurity.php
https://www.augusta.edu/ccs/bs-cybersecurity-engineering.php
https://www.augusta.edu/ccs/bs-cyber-ops.php

The following links detail these three degrees and explain the benefits of
each:

• Difference Between a Computer Science & Information Technology
Degree182

• Computer Science vs Information Systems/Technology183

• Degrees that Pay You Back (from Wall Street Journal)184

Additionally, Augusta University has more information on its advising
page185. To answer the first question (“Which degree will give me the
highest salary?”), you can use Georgia Degrees Pay186

Summary
Computer scientists design and develop computer programs, software,
and applications. IT and IS professionals then use, configure, and trou-
bleshoot those programs, software, and applications.

So it really depends on what you want to do. Do you want to be on
the front end, designing the software and applications? Do you prefer
to use and troubleshoot them? One of the websites gave the analogy
of a home: computer scientists build the home, set up home, install the
lighting, plumbing, etc., and then the IT/IS professionals come and live in
the home to use it, test it, and troubleshoot it.

So which degree is “best”?

Perhaps you can now see how this question is not fair or at least not clear.
If we ask which degree is more difficult, the students will immediately ex-
claim, “Computer Science is the most challenging!” Therefore, one can
perhaps argue that the Computer Science degree is the most rigorous
(challenging) and will likely provide the student with more opportunities
in their career. And the salary statistics support this argument, as CS stu-
dents, on average, have a higher salary than their IT and IS colleagues.

That said, is Computer Science better? Yes, and no. It depends on you!
It depends on your goals. It depends on how hard you want to work.
For some, “better” means more money and more career opportunities.
For others, “better” means easier studies and less math! So again, which

182http://online.king.edu/information-technology/difference-between-a-computer-
science-information-technology-degree/

183https://www.geteducated.com/careers/521-computer- information-systems-vs-
computer-science

184http://online.wsj.com/public/resources/documents/info-Degrees_that_Pay_you_Bac
k-sort.html

185https://www.augusta.edu/advising/
186https://www.usg.edu/georgia-degrees-pay

38

http://online.king.edu/information-technology/difference-between-a-computer-science-information-technology-degree/
http://online.king.edu/information-technology/difference-between-a-computer-science-information-technology-degree/
https://www.geteducated.com/careers/521-computer-information-systems-vs-computer-science
https://www.geteducated.com/careers/521-computer-information-systems-vs-computer-science
http://online.wsj.com/public/resources/documents/info-Degrees_that_Pay_you_Back-sort.html
http://online.wsj.com/public/resources/documents/info-Degrees_that_Pay_you_Back-sort.html
https://www.augusta.edu/advising/
https://www.usg.edu/georgia-degrees-pay

degree is “best”? There is no short answer. As mentioned above, all three
degrees provide the tools you need to hopefully have a great career.
Perhaps the question is best worded as, “Which Degree is Best for me?”
And of course, only you can answer this question!

Course Assistants

🛈 Info

This page is primarily targeted for Augusta University students.

What Is an Undergraduate Course Assistant?
In this course, an Undergraduate Course Assistant (UCA) is generally
present in addition to your instructor. A UCA is a student, generally in
the School of Cyber and Computer Sciences, who successfully passed
CSCI 1301 and that is hired by the School to assist other students.

Their duties generally include:

• Helping the students during the labs,
– To set-up their computers,
– To find the right resources,
– To understand their IDE’s error messages,
– To investigate bugs with them,
– etc.

• Helping the students outside of the lab (through email, teams, or
office hours), for similar tasks as in lab, but also to get ready for an
exam or a quiz,

• Reporting to the instructors any issue, mistake or confusion they no-
ticed,

• Suggesting improvements to the resources shared with the students.

Their duties can not include:

• Understanding for you187,
• Helping you or even commenting on graded material before it was

graded,
• Grading students’ work,
• Helping you with other classes,
• Helping you becoming a self-regulated learner and work on your

schedule188.
187Although that may sound curious, we believe it is important to remind you of the fact

that they can only help you understanding, but that you have to do your part!
188That’s a job really well taken care of by the Academic Success Center189!

39

How Do I Become One?
A UCA is hired by the School upon recommendation of instructors, af-
ter discussion with our Academic Program Coordinator, and possibly our
Director of Undergraduate Studies.

A UCA must :

• Be a student, that is, currently enrolled in courses, or, if during the
Summer, being enrolled in courses for the next Fall semester,

• Pass our Human Resources background check,
• Have an interest in tutoring,
• Clearly understand the limits and boundaries to the help they can

provide to students.

Additionally, if a student wants to help with this particular class, then the
student must have successfully passed CSCI 1301 with a grade of B or
higher

A UCA will:

• Be able to work up to 25 hours per week (an average of 10 hours
per week is typical, but needs to be discussed with the instructor),
paid $12.50 per hour, without other benefits,

• Be adequately trained to use our platforms and edit our resources,
• Be able to work on Campus and discuss their schedule with their

referent instructor,
• Develop a stronger bond with the instructors, facilitating possible

future reference or research projects.

So, in short: talk to any CSCI 1301 instructor if you feel like becoming a
UCA.

I Am a UCA, What Should I Do Now?
Congratulations! You should now read more about your position in the
UCA starting guide190!

What Is the Difference With a GRA?
Graduate Course Assistants (GRA) hold a bachelor and are generally
PhD or Master student. Their duties generally overlap with those of the
instructors and those of the UCAs, as they are the first point of contact of
UCAs, design projects, organize the schedule of the tutoring center and
of the labs.

190uca_guide.html

40

uca_guide.html

What Is the Difference With a URA?
Undegraduate Research Assistants (or “URAs”) share many similarities
with UCAs:

• They both are students employed by the University,
• They both have a maximum of 25 hours/week,
• Their pay rates are the same,
• They both work under the direction of a Faculty member191.

However, their focus is on working on research192 instead of being fo-
cused on teaching. The difference is sometimes tenuous, but URAs posi-
tions are generally given in priority to “advanced” students (that is, close
to graduation), to use their gained knowledge to push further the limits
of human knowledge!

It is not possible to cumulate an URA and an UCA position, but obtain-
ing an UCA position is in general an excellent stepping stone to obtain a
URA position, if you wish to do so: by proving that you are reliable, seri-
ous, agreeable to work with, you will maximize your chances of having a
Faculty member notice you and offer you to work on their research with
them.

UCA starting guide

🛈 Info

This page is primarily targeted for Augusta University students.

Congratulations on your new position! This page briefly explain what is
expected from you as an Undergraduate Course Assistant (UCA).

The Three Rules
There are three important rules for you:

1. This is a job. Meaning that you have a contract that you should
have read and understood, and that you need to carefully
clock in and out to receive the pay you deserve. Briefly re-
viewing the information listed here193, and in particular those
slides194 can help you in making sure that you understand all

191https://www.augusta.edu/ccs/faculty.php
192https://www.augusta.edu/ccs/research.php
193https://www.augusta.edu/hr/university/university_benefits/studenthires.php
194https://www.augusta.edu/hr/university/university_benefits/documents/department_g

uide_studenthireprocess_fy_23.pdf

41

https://www.augusta.edu/ccs/faculty.php
https://www.augusta.edu/ccs/research.php
https://www.augusta.edu/hr/university/university_benefits/studenthires.php
https://www.augusta.edu/hr/university/university_benefits/documents/department_guide_studenthireprocess_fy_23.pdf
https://www.augusta.edu/hr/university/university_benefits/documents/department_guide_studenthireprocess_fy_23.pdf

aspects of your position. Do not forget that you are first and
foremost a student, and that your main goal here is to gradu-
ate.

2. You are here to help students, not to solve their problems. Please,
review what you should and should not do on this section195.
It is difficult to strike the right balance when helping a student,
but a good rule of thumb is that you should not do anything
yourself, just explain and give hints so that they can solve
the problem they are facing. You are here to help students
understand how to solve a problem, not to solve it for them.

3. Don’t hesitate to ask. That’s it. You are not alone to deal with diffi-
cult situations (cheating, rude behavior, student abusing your
time, etc.), and it is normal if you are sometimes unsure of the
best course of action. The instructors are happy to train you
and help you solve problems that may arise.

In general, UCAs should prioritize giving clear and concise explanations
and hints, as to avoid confusion while also helping them better under-
stand the problem-solving process. This means that when you encounter
a problem that you are not able to solve, it’s important to ask a colleague
who is available for help and try to understand their approach. This way,
the student can receive assistance more quickly and will be less likely to
get confused during the troubleshooting process. By emphasizing the
importance of understanding and working through the problem, rather
than just providing a solution, tutors can help students develop the skills
they need to become more independent problem-solvers.

On top of supporting students and helping the instructor, you are also
encouraged to work on the improvement of those resources. Your con-
tribution may range from spell-checking to pointing inconsistencies, from
clarifying statements to re-organizing exercises. Thanks to git and pull re-
quests196, you do not need to worry (too much) about introducing mis-
takes or blunders: the changes you suggest will always be reviewed by
instructors before being merged in our master document. We discuss
below how you can edit our resources.

Editing the Resources
You need three things to start editing our resources:

• A github account & an invitation,
• Some working knowledge of markdown,
• Some working knowledge of github’s interface.

195ca.html#what-is-an-undergraduate-course-assistant
196https://github.com/princomp/princomp.github.io/pulls

42

ca.html#what-is-an-undergraduate-course-assistant
https://github.com/princomp/princomp.github.io/pulls

Follow the instructions in our “Contributing Guidelines”197 for the first step.

For a quick syntax guide in Markdown, the best resource is this website198

and its 10 minutes tutorial199. We list some best practices200, and would
appreciate if you could follow them.

For github’s interface, please refer to the following guide (where the
screenshots where taken for the csci-1301.github.io201 website, but re-
mains relevant).

Figure 1: “Navigating repositories”

GitHub is separated into many “repositories”:

• The princomp.github.io contains most of the resources that will be
used (so it will be where you will navigate to the most),

• The uca-resources–YYYY is a private repository where material use-
ful to UCAs but not accessible to students (such as project solution,
listings, etc.) will be shared,

• The feedback–YYYY and similarly named repositories contains feed-
back submitted by students/users.

Under the Code section (next to Issues, Pull Requests, Actions, etc.), you
will find various folders containing documents for the website. Typically,
if there is some error or mistake in the lecture notes, so that will be where

197contributing.html#if-you-are-a-uca
198https://commonmark.org/help/
199https://commonmark.org/help/tutorial/
200https:/princomp.github.io/docs/about/dev_guide#editing-resources
201https://github.com/csci-1301/csci-1301.github.io

43

contributing.html#if-you-are-a-uca
https://commonmark.org/help/
https://commonmark.org/help/tutorial/
https:/princomp.github.io/docs/about/dev_guide#editing-resources
https://github.com/csci-1301/csci-1301.github.io

Figure 2: “Navigating folders”

you will navigate to the most. The way the resources are organized is
explained here202.

For this example, I just clicked on the first chapter, “General Concepts”.

On this page, you can see the edit history of that specific document
you clicked on. In the corner above the document and below the edit
history, there is a pencil icon that will put you into editing mode for that
document.

On this page, you will see the document formatted as markdown with
two sections at the top of the document: Edit file and Preview. If you
have Edit file selected, then you will see the “code” version of the doc-
ument whereas if you click on the Preview button, you will see the doc-
ument in its “final” form, or how the website users should see it, without
the “code”. To edit, make sure you have Edit file selected.

Once you have made the edits you wanted, you need to “commit”
them; just like how you may write a paper, you need to submit it to the
professor for them to see it. At the bottom of the page, there is a header
box and a description box for you to describe what you did so others will
know the changes you did (you do not need to go into every detail; just
describe it generally, like “I fixed grammatical issues” or “Fixed code er-
ror”). As a UCA, you do not have write access to the princomp.github.io
repository, so submitting a change will write it to a new branch in your fork
<your name>/princomp.github.io, so you can send a pull request. Given

202https:/princomp.github.io/docs/about/dev_guide#resources-organization-overview

44

https:/princomp.github.io/docs/about/dev_guide#resources-organization-overview

Figure 3: “Navigating documents”

Figure 4: “Editing Mode”

45

Figure 5: “Editing vs Previewing”

Figure 6: “Proposing Changes”

46

the new protocol by Github, after making the neccessary edits, click the
“Propose Changes” button located at the bottom. On this page and the
next, there will be a “Create pull request” button, by clicking on this you
will start a pull request. After you have successfully created a new branch
for your commit and started a pull request, your edits will be checked by
others so as to catch any mistake(s) you may have introduced before
your pull request is merged into the base branch.

Figure 7: “Committing”

Note that if you are making edits inside the repository for UCAs, uca-
resources-<semester>-YYYY, you do have write access so there will
instead be two buttons: Commit directly to main branch and Create a
new branch for this commit and start a pull request

• Commit directly to main branch submits your edits directly into the
document.

• Create a new branch for this commit and start a pull request creates
a “pull request” (which can be found in the Pull Requests tab at the
top of the page203) which essentially notifies others “you edited this
document and you want them to check it”. Others can check the
changes you make, improve them, change them, and can submit
them for you.

You can Create a new branch for this commit and start a pull request so
others can double check your edits: it can act as a safety net, so your col-
leagues will be able to catch any mistake(s) you may have introduced!

203https://github.com/princomp/princomp.github.io/pulls

47

https://github.com/princomp/princomp.github.io/pulls

Computer Requirements

This page contains some recommendations on students wishing to buy
a computer to complete their program in the School of Cyber and Com-
puter Sciences204. Note that possessing a computer is not required to
complete CSCI 1301205, but recommended.

In Short
Anything less than 5 years old running Microsoft Windows, macOs or
a Linux operating system is probably fine. Second hand and custom
built are fine, but you will in all likelihood needs a portable computer
(as opposed to a desktop computer) to present your work and work on
projects.

In Terms of Hardware
Desktop, Laptop, or something else? A laptop is generally recom-

mended (to take notes in class, make presentations, work on
projects at School, …) but technically possessing only a desktop
should be ok (and will be more comfortable to use, in all likeliness).
Tablets and other “small” handled devices (such as Netbooks206,
Chromebooks207 or Mini PCs208) are not recommended and will in
all likelihood prove challenging to use for some classes.

Component Minimum Suggested Comfortable

CPU209 4
cores

@
2.66
GHz

6 cores @ 3.8 GHz 6 cores @ 4.4 GHz

RAM210 8GB 16GB 32GB
Hard Drive211 100GB 500GB of SSD212 1TB of SSD213

204https://www.augusta.edu/ccs/
205https:/princomp.github.io/installing_software.md#accessing-an-ide
206https://en.wikipedia.org/wiki/Netbook
207https://en.wikipedia.org/wiki/Chromebook
208https://en.wikipedia.org/wiki/Mini_PC
209https://en.wikipedia.org/wiki/Processor_(computing)
210https://en.wikipedia.org/wiki/Random-access_memory
211https://en.wikipedia.org/wiki/Hard_disk_drive
212https://en.wikipedia.org/wiki/Solid-state_drive
213https://en.wikipedia.org/wiki/Solid-state_drive

48

https://www.augusta.edu/ccs/
https:/princomp.github.io/installing_software.md#accessing-an-ide
https://en.wikipedia.org/wiki/Netbook
https://en.wikipedia.org/wiki/Chromebook
https://en.wikipedia.org/wiki/Mini_PC
https://en.wikipedia.org/wiki/Processor_(computing)
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Solid-state_drive

Specifications: GPU214 and other special equipment are not required,
but recent USB-C connectors will be useful.

As an example: Dr. Aubert215 uses a Dell Latitude 5480/5488216 from 2017
(but in no way endorses it) with

• 4 cores @ 2.40 GHz CPU,
• 8GB of ram,
• 238 GB of hard drive,

and of courses wishes that it was a bit more responsive at times, but
can conduct otherwise all his professional activities.

In Terms of Operating System
We will briefly consider four “families” of operating systems:

• Microsoft Windows217 (Windows 10, Windows 11, etc.)
• macOS218 (macOS Ventura, macOS Sonoma, etc.)
• Linux operating systems219 (Ubuntu, Debian, Gentoo, etc.)
• Operating systems that uses their web browsers as their principal

user interface (essentially, ChromeOS220).

Note we do not discuss Android221 or iOS222 since they are primarily mo-
bile operating systems, and not easily suited for the development work-
load in our curriculum.

In short: Anything but ChromeOS is (probably) fine.
Expanded:

• If you are (planning on) using Visual Studio223 as your IDE, then
windows is your best choice of operating system.

• If you need to use macOS for whatever reason, then you will
probably be able to accommodate all the requirements, but
it may require some tweaking at times.

• Using Linux-based operating systems are a great way to learn
how to tinker with your computer (you have full control!), but
will sometimes require you to be creative to meet courses ex-
pectations.

214https://en.wikipedia.org/wiki/Graphics_processing_unit
215https://spots.augusta.edu/caubert/
216https://www.dell.com/support/home/en-us/product-support/product/latitude-14-

5480-laptop/docs
217https://en.wikipedia.org/wiki/Microsoft_Windows
218https://en.wikipedia.org/wiki/MacOS
219https://en.wikipedia.org/wiki/Linux
220https://en.wikipedia.org/wiki/ChromeOS
221https://en.wikipedia.org/wiki/Android_(operating_system)
222https://en.wikipedia.org/wiki/IOS
223https://visualstudio.microsoft.com/

49

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://spots.augusta.edu/caubert/
https://www.dell.com/support/home/en-us/product-support/product/latitude-14-5480-laptop/docs
https://www.dell.com/support/home/en-us/product-support/product/latitude-14-5480-laptop/docs
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/ChromeOS
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/IOS
https://visualstudio.microsoft.com/

• Virtual machines allow you to simulate (almost) any operating
system using (almost) any operating system, and is required for
some courses. Using virtual machines means, essentially, that
your choice of operating system does not matter at all.

• Remember that multi-boots224 (that is, installing multiple oper-
ating systems side-by-side) is an option.

Virtual Machines

Virtual machines allow you to simulate (almost) any operating system
using (almost) any operating system: this means that, for instance, you
can load the Windows 11 operating system from your computer running
Debian 12.5, or the Debian 12.5 operating system from macOS 14.

Note that CSCI 4532 - Hardware and Embedded Systems and CSCI 4531
- Malware Analysis and Reverse Engineering require you to run virtual ma-
chines. If you are planning on taking one of those classes, make sure
your computer can run virtual machines!

You can find on this page225 some indications on how to run a virtual ma-
chine on your computer, and you can check on-line the recommended
specifications for Hyper-V226, VirtualBox227, kvm228, vmware229. Note that,
as a student, you can obtain a free licence for Windows230.

Where to Buy?
That is really up to you, but remember that, as a student (or employee),
you are allowed to

• Some discounts231,
• A free licence for Windows232.

Second-hand computers or even custom-built computers are probably
fine, but requires more skills (such as how to factory-reset a computer and

224https://en.wikipedia.org/wiki/Multi-booting
225https:/princomp.github.io/installing_software.md#installing-anything-anywhere
226https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hype

r-v-requirements
227https://www.virtualbox.org/wiki/End-user_documentation
228https://www.linux-kvm.org/page/FAQ#What_do_I_need_to_use_KVM?
229https://www.vmware.com/products/workstation-player.html
230https://portal.azure.com/?Microsoft_Azure_Education_correlationId=696fbf50-4829-

476c-bfc8-09974888f850#view/Microsoft_Azure_Education/EducationMenuBlade/~/soft
ware

231https://my.augusta.edu/discounts/electronics.php
232https://portal.azure.com/?Microsoft_Azure_Education_correlationId=696fbf50-4829-

476c-bfc8-09974888f850#view/Microsoft_Azure_Education/EducationMenuBlade/~/soft
ware

50

https://en.wikipedia.org/wiki/Multi-booting
https:/princomp.github.io/installing_software.md#installing-anything-anywhere
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-requirements
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-requirements
https://www.virtualbox.org/wiki/End-user_documentation
https://www.linux-kvm.org/page/FAQ#What_do_I_need_to_use_KVM?
https://www.vmware.com/products/workstation-player.html
https://portal.azure.com/?Microsoft_Azure_Education_correlationId=696fbf50-4829-476c-bfc8-09974888f850#view/Microsoft_Azure_Education/EducationMenuBlade/~/software
https://portal.azure.com/?Microsoft_Azure_Education_correlationId=696fbf50-4829-476c-bfc8-09974888f850#view/Microsoft_Azure_Education/EducationMenuBlade/~/software
https://portal.azure.com/?Microsoft_Azure_Education_correlationId=696fbf50-4829-476c-bfc8-09974888f850#view/Microsoft_Azure_Education/EducationMenuBlade/~/software
https://my.augusta.edu/discounts/electronics.php
https://portal.azure.com/?Microsoft_Azure_Education_correlationId=696fbf50-4829-476c-bfc8-09974888f850#view/Microsoft_Azure_Education/EducationMenuBlade/~/software
https://portal.azure.com/?Microsoft_Azure_Education_correlationId=696fbf50-4829-476c-bfc8-09974888f850#view/Microsoft_Azure_Education/EducationMenuBlade/~/software
https://portal.azure.com/?Microsoft_Azure_Education_correlationId=696fbf50-4829-476c-bfc8-09974888f850#view/Microsoft_Azure_Education/EducationMenuBlade/~/software

/ or how to (re)install an operating system) and inspections on your end.

Is There Anything Else I Should Know?
• A well taken-care of computer can easily last 5 years, but laptops

are harder to upgrade and preserve in good shape than desktops.
• Ergonomics is important: you will most likely spend many hours on

your computer, so make sure your workstation is well organized233.
• A programmer is first and foremost a typist: make sure you develop

good habits and learn to type correctly234. Exploring ergonomics
keyboard layouts235 and ergonomics mice236 can save you later
from carpal tunnel syndrome, arthritis, and other repetitive strain in-
juries.

Installing Software

Generalities on Installing Software

You probably already installed software in your life, be it VLC237, Mi-
crosoft Teams238, or Whatsapp239. However, depending on whether
you installed it on a phone, a tablet, a computer, and depending on
the operating systems (Android, Windows 10, iOS, Ubuntu, etc.) your
experience may have varied drastically.

Between the Play store240, the command-line interface241, homebrew242

and the act of downloading software using your browser and then in-
stalling it using the navigator, there can be a lot of differences, but in
all those circumstances you should keep security in mind. In addition
to making sure that you are downloading the software from a trusted
source, you should also be vigilant about the information the software
will be able to access about e.g., your private life.

As data can be lost or corrupted upon downloading, many platforms
now use checksums243 to verify the integrity of the software you down-

233https://www.wikihow.com/Set-Up-an-Ergonomically-Correct-Workstation
234https://www.wikihow.com/Type
235https://en.wikipedia.org/wiki/Keyboard_layout#Other_Latin-script_keyboard_layouts
236https://en.wikipedia.org/wiki/Computer_mouse#Ergonomic_mice
237http://www.videolan.org/
238https://www.microsoft.com/en-us/microsoft-teams/download-app
239https://www.whatsapp.com/
240https://www.wikiwand.com/en/Google_Play#Play_Store_on_Android
241https://www.wikiwand.com/en/Command-line_interface
242https://brew.sh/
243https://www.wikiwand.com/en/Checksum

51

https://www.wikihow.com/Set-Up-an-Ergonomically-Correct-Workstation
https://www.wikihow.com/Type
https://en.wikipedia.org/wiki/Keyboard_layout#Other_Latin-script_keyboard_layouts
https://en.wikipedia.org/wiki/Computer_mouse#Ergonomic_mice
http://www.videolan.org/
https://www.microsoft.com/en-us/microsoft-teams/download-app
https://www.whatsapp.com/
https://www.wikiwand.com/en/Google_Play#Play_Store_on_Android
https://www.wikiwand.com/en/Command-line_interface
https://brew.sh/
https://www.wikiwand.com/en/Checksum

loaded before installing it. This is an excellent practice that can also
be performed “by hand”, as explained for instance for the database
manager MySQL244: the main idea is that the probability of the signa-
ture matching a tampered-with file is extremely low, and that as long as
you are downloading the signature and the software from two different
sources, you are considerably reducing the attack surface245.

Executing Code Found on-line
As you progress in this class, you will be asked more and more to down-
load and execute code hosted in our repository246. How can you tell that
you can trust this code?

We have not implemented checksum-matching (yet!), but you can trust
this code as it was coded by your instructors, and hosted on a platform
using two-factor authentication247 where every action is tracked using
versioning248. Concretely, this means that only somebody who manages
to steal your instructor’s credentials and their phone, and thwart all the
other instructors’ vigilance, would be able to host malicious code on our
platform: while we certainly imagine that this is theoretically possible, we
hope that you will agree that the probability is low enough for you to trust
the code on this site.

As often, security is not absolute, but aims at providing reasonable confi-
dence. Executing “blindly” code found on-line, on the other hand, gives
you a good chance of facing unpleasant surprises: while there certainly
is a lot of useful, good code on websites like stackoverflow249your instruc-
tor probably uses such websites, by the way!, copying-and-pasting it
without understanding its purpose or general structure is almost guaran-
teed to, at best, not execute properly, at worst, make your system unsta-
ble or insecure.

Accessing an IDE

An IDE250, for “Integrated development environment”, is the software or
service you will be using to write, compile, execute and debug your code.
There are many available IDEs, and some can accommodate multiple
different programming languages.

244https://dev.mysql.com/doc/refman/8.0/en/verifying-package-integrity.html
245https://www.wikiwand.com/en/Attack_surface
246https://github.com/princomp/princomp.github.io/
247https://docs.github.com/en/authentication/securing-your-account-with-two-factor-

authentication-2fa/about-two-factor-authentication
248https://www.wikiwand.com/en/Software_versioning
249https://stackoverflow.com/
250https://www.wikiwand.com/en/Integrated_development_environment

52

https://dev.mysql.com/doc/refman/8.0/en/verifying-package-integrity.html
https://www.wikiwand.com/en/Attack_surface
https://github.com/princomp/princomp.github.io/
https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa/about-two-factor-authentication
https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa/about-two-factor-authentication
https://www.wikiwand.com/en/Software_versioning
https://stackoverflow.com/
https://www.wikiwand.com/en/Integrated_development_environment

For C#, there are many different possibilities251: some are cross-platforms
(meaning you can use them on macOS, Windows or Linux), some are
provided free of charge, some have not been updated in a long time.
Three natural choices are Visual Studio252, MonoDevelop253 and Rider254.
While the last two are accessible on every operating systems, Visual Stu-
dio is available only for Windows, and in a slightly different version for
macOS.

To access one or the other, you will need either

• a computer with the right to install software on it,
• to access one of the computers in the computer lab255, or
• a computer with internet access.

The third solution is a backup plan, as instead you will access a very min-
imal version of an IDE to test small snippets of code. You should not rely
on it for the duration of this course.

Installing an IDE On Your Own Computer

This part gathers some references for you to install Visual Studio256, Mon-
oDevelop257 and Rider258 on your own computer, regardless of your op-
erating system. It is strongly encouraged that you do so, especially if you
want to continue in a CS/IT/Cyber degree, but is not mandatory259.

The instructions are detailed, but there are plenty of ways this can go
wrong: make sure you have read and followed those instructions care-
fully before asking for help260!

Installing Visual Studio On Your Own Computer Note that we are not
installing “Visual Studio Code”, but simply “Visual Studio”.

For Windows

1. Visit Azure Dev Tools for Teaching261.
251https://www.wikiwand.com/en/Comparison_of_integrated_development_environme

nts#C%23
252https://visualstudio.microsoft.com/
253https://www.monodevelop.com/
254https://www.jetbrains.com/rider/features/
255https://my.augusta.edu/it/computers-printing.php
256https://visualstudio.microsoft.com/
257https://www.monodevelop.com/
258https://www.jetbrains.com/rider/features/
259Unless this class is fully online, of course.
260https:/princomp.github.io/labs/Introduction#how-to-get-help
261https://aka.ms/devtoolsforteaching

53

https://www.wikiwand.com/en/Comparison_of_integrated_development_environments#C%23
https://www.wikiwand.com/en/Comparison_of_integrated_development_environments#C%23
https://visualstudio.microsoft.com/
https://www.monodevelop.com/
https://www.jetbrains.com/rider/features/
https://my.augusta.edu/it/computers-printing.php
https://visualstudio.microsoft.com/
https://www.monodevelop.com/
https://www.jetbrains.com/rider/features/
https:/princomp.github.io/labs/Introduction#how-to-get-help
https://aka.ms/devtoolsforteaching

2. Log in using your Augusta University credentials.

3. Select “Download software”.

4. Look for Visual Studio. The path is Education → Software → Visual
Studio Enterprise 2019/2022. You can search “Services” for the “Ed-
ucation” group and then click “Software” if the education group is
not immediately displayed. It should look like the following:

Normally, the following direct link should get you to the right page:
https://portal.azure.com/?Microsoft_Azure_Education_correlat
ionId=8ee63052-dc32-46f7-a109-e26793622dbf#view/Microsoft_
Azure_Education/EducationMenuBlade/~/software. Type “Visual
Studio Enterprise” in the search bar and you should find what you
are looking for:

5. Download and install Visual Studio (leave all the options on their
default settings).

Before clicking install, make sure to check “.NET Desktop Develop-
ment”

If you are installing Visual Studio 2019, click the dropdown for .NET
Desktop Development and check “.NET SDK (out of support)”. You
do not have to do this for Visual Studio 2022

54

https://portal.azure.com/?Microsoft_Azure_Education_correlationId=8ee63052-dc32-46f7-a109-e26793622dbf#view/Microsoft_Azure_Education/EducationMenuBlade/~/software
https://portal.azure.com/?Microsoft_Azure_Education_correlationId=8ee63052-dc32-46f7-a109-e26793622dbf#view/Microsoft_Azure_Education/EducationMenuBlade/~/software
https://portal.azure.com/?Microsoft_Azure_Education_correlationId=8ee63052-dc32-46f7-a109-e26793622dbf#view/Microsoft_Azure_Education/EducationMenuBlade/~/software

6. Enter the product key you obtained previously, following the instruc-
tions in the documentation262. Normally, clicking on “View key” on
the screen pictured in the fourth step above should give you access
to a key, that you simply need to copy-and-paste in the menu you
can access on Visual Studio by clicking on “Select File” → “Account
Settings” → “License with a Product Key”.

For Mac Download a version of Visual Studio at https://visualstudio.m
icrosoft.com/vs/mac/. It differs a bit from the Windows version, but that
should not impact your experience in this class. The only Visual Studio
feature we rely on is the ability to create “Console Apps with C#”, which
is equally available in both the Windows and Mac versions.

Installing MonoDevelop On Your Own Computer Unfortunately, Mon-
oDevelop offers pre-packaged release only for linux distributions

• If you are using linux (e.g. Ubuntu, Debian, etc.), then please head
out to MonoDevelop’s download page263.

• If you are using MacOS, you can have a look at the compilation
instructions264, but it is very likely that you will find them impossible
to understand.

• If you are using Windows, you can have a look at the compilation
instructions265, but it is very likely that you will find them impossible
to understand.

262https://learn.microsoft.com/en-us/visualstudio/ide/how-to-unlock-visual-studio?vie
w=vs-2019

263https://www.monodevelop.com/download/#fndtn-download-lin
264https://www.monodevelop.com/developers/building-monodevelop/#macos
265https://www.monodevelop.com/developers/building-monodevelop/#windows

55

https://visualstudio.microsoft.com/vs/mac/
https://visualstudio.microsoft.com/vs/mac/
https://learn.microsoft.com/en-us/visualstudio/ide/how-to-unlock-visual-studio?view=vs-2019
https://learn.microsoft.com/en-us/visualstudio/ide/how-to-unlock-visual-studio?view=vs-2019
https://www.monodevelop.com/download/#fndtn-download-lin
https://www.monodevelop.com/developers/building-monodevelop/#macos
https://www.monodevelop.com/developers/building-monodevelop/#windows

Installing Rider On Your Own Computer You can download Rider from
their website266, for any operating system. Note that, as a student, you
can obtain a licence for free267: simply fill out this form268, making sure
you use your @augusta.edu email account, and you should receive a
free licence instantaneously!

Note that Jetbrains offers to use a SHA-256 checksum (for instance, for
the linux version269) for you to check that your download has not been
tampered with. In any case, you can consult their detailed instructions270

to install and execute Rider on any operating system.

Installing Geany On Your Own Computer

Note: This method will only allow you edit and compile individual .cs files,
andwill not compile C## Solution Projects (which will be required by
the fifth week of lab). We would recommend learning another one
of the IDEs listed above. If you still seek to use Geany throughout this
course, you will be on your own to find a way to configure Geany
to work with C## Solution Projects, and could start by reading this
exchange271 (which is about projects in Linux, but applies equally
well to projects in C#) or this one272.

You can download Geany from their website273, for any operating system.
Unfortunately, Geany does not natively build and compile C## code. To
use Geany as a text editor for C#, we must download the Mono C##
compiler from their website274. Make sure to download the most recent
version to assure your compiler has the most up-to-date version of “.NET”.

Once you installed Mono, locate the “csc.bat”, “csc.exe” or “csc” file in
Mono’s “bin” folder and copy the file path. This path can be of the form

C:\Program Files (x86)\Mono\bin\csc.bat

on windows, or

/usr/bin/csc

on Unix systems.
266https://www.jetbrains.com/rider/download/
267https://www.jetbrains.com/community/education
268https://www.jetbrains.com/shop/eform/students
269https://download.jetbrains.com/rider/JetBrains.Rider-2022.2.2.tar.gz.sha256
270https://www.jetbrains.com/help/rider/Installation_guide.html#standalone
271https://stackoverflow.com/q/54041013
272https://stackoverflow.com/q/8264323
273https://www.geany.org/
274https://www.mono-project.com/download/stable/

56

https://www.jetbrains.com/rider/download/
https://www.jetbrains.com/community/education
https://www.jetbrains.com/shop/eform/students
https://download.jetbrains.com/rider/JetBrains.Rider-2022.2.2.tar.gz.sha256
https://www.jetbrains.com/help/rider/Installation_guide.html#standalone
https://stackoverflow.com/q/54041013
https://stackoverflow.com/q/8264323
https://www.geany.org/
https://www.mono-project.com/download/stable/

Now open a .cs file using Geany. Click the arrow next to the “Build” But-
ton and click “Set Build Commands” from the dropdown menu.

Figure 8: Accessing the menu to set build commands

In the “Set Build Commands” window, erase the entry next to the “Com-
pile” button and paste the file path to the “csc.bat” in quotation marks.
After the file path, create a single space followed by “%f” with the quo-
taion marks. All in all, you should have something of the form

"C:\Program Files (x86)\Mono\bin\csc.bat" "%f"

in the “Command” field of the “Compile” line.

Confirm the change by clicking OK and now you will be able to compile,
build, and execute standalone .cs files.

Installing Anything Anywhere If the IDE you would like to adopt is not
available for your operating system, you can use a Virtual Machine275

manager to execute a linux-based distribution or a Windows image on
top of your operating system.

For this, and regardless of your current operating system, you will need a
Virtual Machine276 manager.

1. There are many (free) options to chose from, let us mention
(a) Virtual Box277 (for Windows, Linux and Mac),
(b) QEMU278 (for Windows, Linux and Mac),
(c) Hyper-V279 (for Windows),

275https://www.wikiwand.com/en/Virtual_machine
276https://www.wikiwand.com/en/Virtual_machine
277https://www.virtualbox.org/
278https://www.qemu.org
279https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-

start/enable-hyper-v

57

https://www.wikiwand.com/en/Virtual_machine
https://www.wikiwand.com/en/Virtual_machine
https://www.virtualbox.org/
https://www.qemu.org
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v

Figure 9: Setting the build commands

58

2. Download a version of “Microsoft Operating Systems” from Azure
Dev Tools for Teaching280, or a linux-based distribution (typically,
ubuntu281 has a good reputation of being accessible and user-
friendly).

3. Install and execute your version of Windows or Linux from your virtual
machine, and follow the corresponding instructions to install the IDE
you are interested in.

Note that it is illegal to execute macOS in a virtual environment that is
not hosted on a mac computer282, which drastically reduces the interest
for you to consider this option.

Accessing One of the Computers in a Computer Lab

Please refer to this page from AU’s Information Technology283 to
know where the computer labs are located. Visual Studio should be
pre-installed on every computer.

Compiling Code On-Line

As a backup or only to test snippets of code, you can compile C## code
online. Multiple online platforms exist, such as:

• https://www.browxy.com/
• https://www.tutorialspoint.com/compile_csharp_online.php
• https://www.onlinegdb.com/online_csharp_compiler
• https://www.jdoodle.com/compile-c-sharp-online/
• https://dotnetfiddle.net/
• https://www.w3schools.com/CS/trycs.php?filename=demo_hello

world

Note that none of them are endorsed by the school and that they can
pose security and privacy challenges: never enter any sensitive informa-
tion and do not rely on them too heavily. However, they can be a good
support if you would like to test a short snippet of code but do not have
access at the moment to a computer with an IDE installed.

(Un)Zipping Archives

This short note explains how to
280https://aka.ms/devtoolsforteaching
281https://ubuntu.com/appliance/vm
282https://law.stackexchange.com/q/18282
283https://my.augusta.edu/it/computers-printing.php

59

https://www.browxy.com/
https://www.tutorialspoint.com/compile_csharp_online.php
https://www.onlinegdb.com/online_csharp_compiler
https://www.jdoodle.com/compile-c-sharp-online/
https://dotnetfiddle.net/
https://www.w3schools.com/CS/trycs.php?filename=demo_helloworld
https://www.w3schools.com/CS/trycs.php?filename=demo_helloworld
https://aka.ms/devtoolsforteaching
https://ubuntu.com/appliance/vm
https://law.stackexchange.com/q/18282
https://my.augusta.edu/it/computers-printing.php

• Unzip files,
• Zip folders,
• Locate your project

for the three main operating systems (Windows, Linux and macOS).

Unzipping Files
Windows

Navigate your file explorer and navigate to your Downloads folder (or
wherever you downloaded the file). From there, look for the file you
downloaded, right-click, and select “Extract All…”. When the “Extract
Compressed (Zipped) Folder” window opens, click the “Extract” button.

Linux

This guide is assuming you have Zip/Unzip installed on your Linux distribu-
tion. If this is not the case, first follow this install guide284.

Using the graphical interface Normally, a simple right click and choose
“Extract” or “Open with Ark”285 should do it.

Using the Command-Line Navigate to your command-line interface
and execute the following command (as a normal user, as indicated by
$):

$ unzip [FileName].zip

where “[FileName].zip” is the name of the zip file.

macOS

Simply double-click on the zip file to unzip it onto your desktop.

Zipping Files
Windows

Navigate to your file explorer and go to where your solution is stored on
your system, the default file path being:

C:\Users\[UserName]\source\repos

284https://www.tecmint.com/install-zip-and-unzip-in-linux/
285https://www.wikihow.tech/Unzip-Files-in-Linux

60

https://www.tecmint.com/install-zip-and-unzip-in-linux/
https://www.wikihow.tech/Unzip-Files-in-Linux

where “[UserName]” is your Windows username (on school computers,
this should be your AU username). Right click the folder you want to zip,
go down the list to the “Send to” option, and then click on the “Com-
pressed (Zipped) Folder” option. This should then create a new zip file.

Linux

Using the graphical interface Normally, a simple right click and choose
“Compress”286 should do it.

Using the Command-Line Navigate to your command-line interface
and execute the following command (as a normal user, as indicated by
$):

$ zip -r [ZipFileName].zip [FileName]

where “[ZipFileName].zip” is the name you want for the zip file, and “[File-
Name]” for the folder you want to zip.

macOS

Navigate to your file explorer and go to where your solution is stored on
your system, the default file path being:

[UserName]\source\repos

where “[UserName]” is your Mac username. Right-click on the folder that
you want to zip up and click on the “Compress the Folder” option.

But Where Is My Project?
By default, it should be stored in a folder located in

C:\Users\[UserName]\source\repos

for Windows users,

[UserName]\source\repos

for macOS users,

/home/[UserName]/Projects

for Linux users.

When in doubt, open your project in the IDE, right-click on the solution,
and look for an option called “Open in File Explorer” or “Open Containing
Folder”:

286https://www.wikihow.com/Make-a-Zip-File-in-Linux

61

https://www.wikihow.com/Make-a-Zip-File-in-Linux

Keyboard Shortcuts

Foreword
This document contains useful keyboard shortcuts for different operating
systems and IDEs. We use the following symbols:

Symbol Common Name

⇧ Shift
⌥ Option (or Alt)
⌘ Command (or Cmd)
↵ (Carriage) Return

The sections labeled with the star symbol (“*”) work generally every-
where, beyond your IDE.

More advanced shortcuts may be available to your particular IDE:

62

• For Visual Studio for Windows, refer to the documentation287,
• For Visual Studio for MacOS, refer to the documentation288

• For Rider, refer to the documentation289,
• For MonoDevelop, you can refer to this cheatsheet290 or directly

access the key binding panel291.

Useful Shortcuts
Build solution

OS Keys

Linux Ctrl + ⇧ + B
MacOS ⌘ + B
Windows Ctrl + ⇧ + B

Exit any program*

OS Keys

Linux Alt + F4 or Ctrl + q
MacOS ⌘ + q
Windows Alt + F4

Redo*

OS Keys

Linux Ctrl + y
MacOS ⌘ + y
Windows Ctrl + y

287https://docs.microsoft.com/en-us/visualstudio/ide/default-keyboard-shortcuts- in-
visual-studio?view=vs-2019

288https://docs.microsoft.com/en-us/visualstudio/mac/keyboard-shortcuts?view=vsm
ac-2019

289https://www.jetbrains.com/help/rider/mastering_keyboard_shortcuts.html
290https://shortcutworld.com/Xamarin-Studio/win/Xamarin-Studio-(MonoDevelop)_Sho

rtcuts
291https://mhut.ch/journal/2011/02/05/monodevelop-tips-key-bindings

63

https://docs.microsoft.com/en-us/visualstudio/ide/default-keyboard-shortcuts-in-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/ide/default-keyboard-shortcuts-in-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/mac/keyboard-shortcuts?view=vsmac-2019
https://docs.microsoft.com/en-us/visualstudio/mac/keyboard-shortcuts?view=vsmac-2019
https://www.jetbrains.com/help/rider/mastering_keyboard_shortcuts.html
https://shortcutworld.com/Xamarin-Studio/win/Xamarin-Studio-(MonoDevelop)_Shortcuts
https://shortcutworld.com/Xamarin-Studio/win/Xamarin-Studio-(MonoDevelop)_Shortcuts
https://mhut.ch/journal/2011/02/05/monodevelop-tips-key-bindings

Run/execute program

OS Keys

Linux Ctrl + F5
MacOS F5 -or- ⌥ + ⌘ + ↵
Windows Ctrl + F5

Save*

OS Keys

Linux Ctrl + s
MacOS ⌘ + s
Windows Ctrl + s

Save All*

OS Keys

Linux Ctrl + ⇧ + s
MacOS ⌘ + ⇧ + s
Windows Ctrl + ⇧ + s

Undo*

OS Keys

Linux Ctrl + z
MacOS ⌘ + z
Windows Ctrl + z

Comment Code Selection

OS Keys

Linux Ctrl + k + c
MacOS ⌘ + k + c
Windows Ctrl + k + c

Uncomment Code Selection

64

OS Keys

Linux Ctrl + k + u
MacOS ⌘ + k + u
Windows Ctrl + k + u

Datatypes in C

Value Types
Numeric

Signed Integer

Type Range Size

sbyte -128 to 127 Signed 8-bit integer
short -32,768 to 32,767 Signed 16-bit integer
int -2,147,483,648 to

2,147,483,647
Signed 32-bit integer

long -
9,223,372,036,854,775,808

to
9,223,372,036,854,775,807

Signed 64-bit integer

Unsigned Integer

Type Range Size

byte 0 to 255 Unsigned 8-bit integer
ushort 0 to 65,535 Unsigned 16-bit

integer
uint 0 to 4,294,967,295 Unsigned 32-bit

integer
ulong 0 to

18,446,744,073,709,551,615
Unsigned 64-bit

integer

Floating-point Numbers

Type Approximate Range Precision

float ±1.5e−45 to ±3.4e38 7 digits
double ±5.0e−324 to ±1.7e308 15–16 digits

65

Type Approximate Range Precision

decimal (-7.9 x 1028 to 7.9 x
1028)/(100 to 1028)

28–29 significant digits

Logical

Type Possible Values Size

bool true, false 8-bit

Character

Type Range Size

char U+0000 to U+ffff Unicode 16-bit character

Literals

Name
Corresponding

datatype Examples

Integer Literal int 40, -39, 291838, 0, …
Float Literal float 3.5F, -43.5f,

309430.70006F, …
Double Literal double 28.98, 239.0,

-391.089, 0.0, …
Decimal Literal decimal 8.95m, 3283.9M,

-30m, …
Boolean Literal bool true, false

Character Literal char 'Y', 'a', '0', '\n',
'\x0058', '\u0058',

…

Compatibility
This table is to be read as

✓ means that those values or variables from the datatypes in
the row and column can be “operated together” (meaning,
you can for instance multiply them), ✘means that those values
or variables from the datatypes in the row and column cannot
be “operated together” (meaning, you cannot for instance
multiply them).

66

Integer
Literal Float Literal

Double
Literal

Decimal
Literal

int ✓ ✘ ✘ ✘
float ✓ ✓ ✘ ✘
double ✓ ✓ ✓ ✘
decimal ✓ ✘ ✘ ✓

Result Type of Operations

int float double decimal
int int float double decimal
float float float double illegal
double double double double illegal
decimal decimal illegal illegal decimal

This table is to be read as

Values or variables from the datatypes in the row and column
can be “operated together” and will produce the datatype
indicated in the cell, or cannot be “operated together” if the
value in the cell is “illegal”.

References
• https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/t

ypes-and-variables
• https://docs.microsoft.com/en-us/dotnet/csharp/language-

reference/keywords/integral-types-table
• https://docs.microsoft.com/en-us/dotnet/csharp/language-

reference/keywords/floating-point-types-table
• https://docs.microsoft.com/en-us/dotnet/csharp/language-

reference/keywords/value-types-table
• https://docs.microsoft.com/en-us/dotnet/csharp/language-

reference/keywords/implicit-numeric-conversions-table
• https://docs.microsoft.com/en-us/dotnet/csharp/language-

reference/keywords/explicit-numeric-conversions-table

67

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/types-and-variables
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/types-and-variables
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/integral-types-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/integral-types-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/floating-point-types-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/floating-point-types-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/implicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/implicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table

Computers and Programming

Principles of Computer Programming
• Computer hardware changes frequently - from room-filling ma-

chines with punch cards and tapes to modern laptops and tablets
- and will continue doing so.

• With these changes, the capabilities of computers increase rapidly
(storage, speed, graphics, etc.)

• Computer programming languages also change
– Better programming language theory leads to new program-

ming techniques
– Improved programming language implementations
– New languages are created, old ones updated

• There are hundreds of programming languages292, why?
– Different tools for different jobs

∗ Some languages are better suited for certain jobs
∗ For example, Python is best for scripting, Javascript is best

for web pages, MySQL is best for databases, etc.
– Personal preference and popularity

• This class is about “principles” of computer programming
– Common principles behind all languages will not change,

even though hardware and languages do
– How to organize and structure data
– How to express logical conditions and relations
– How to solve problems with programs

Programming Language Concepts
We begin by discussing three categories of languages manipulated by
computers. We will be studying and writing programs in high-level lan-
guages, but understanding their differences and relationships to other
languages293 is of importance to become familiar with them.

• Machine language
– Computers are made of electronic circuits

∗ Circuits are components connected by wires
∗ Some wires carry data - e.g. numbers
∗ Some carry control signals - e.g. do an add or a subtract

operation
– Instructions are settings on these control signals

∗ A setting is represented as a 0 or 1
292https://www.wikiwand.com/en/List_of_programming_languages
293That will be studied in the course of your study if you continue as a CS major.

68

https://www.wikiwand.com/en/List_of_programming_languages

∗ A machine language instruction is a group of settings - For
example: 1000100111011000

– Most CPUs use one of two languages: x86 or ARM
• Assembly language

– Easier way for humans to write machine-language instructions
– Instead of 1s and 0s, it uses letters and “words” to represent an

instruction.
∗ Example x86 instruction:
MOV BX, AX
which makes a copy of data stored in a component called AX
and places it in one called BX

– Assembler: Translates assembly language instructions to ma-
chine language instructions
∗ For example: MOV BX, AX translates into 1000100111011000
∗ One assembly instruction = one machine-language

instruction
∗ x86 assembly produces x86 machine code

– Computers can only execute the machine code
• High-level language

– Hundreds including C#, C++, Java, Python, etc.
– Most programs are written in a high-level language since:

∗ More human-readable than assembly language
∗ High-level concepts such as processing a collection of

items are easier to write and understand
∗ Takes less code since each statement might be translated

into several assembly instructions
– Compiler: Translates high-level language to machine code

∗ Finds “spelling” errors but not problem-solving errors
∗ Incorporates code libraries – commonly used pieces of

code previously written such as Math.Sqrt(9)
∗ Optimizes high-level instructions – your code may look very

different after it has been optimized
∗ Compiler is specific to both the source language and the

target computer
– Compile high-level instructions into machine code then exe-

cute since computers can only execute machine code

A more subtle difference exists between high-level languages. Some
(like C) are compiled (as we discussed above), some (like Python) are
interpreted, and some (like C#) are in an in-between called managed.

• Compiled vs. Interpreted languages
– Not all high-level languages use a compiler - some use an in-

terpreter
– Interpreter: Lets a computer “execute” high-level code by

translating one statement at a time to machine code
– Advantage: Less waiting time before you can execute the pro-

69

High-Level Language

int age = 10;
char initial = 'C';

Assembly Language

movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $10, -4(%rbp)
movb $67, -5(%rbp)
movl $0, %eax
popq %rbp

Machine Language

01000010 01001001
00000000 00101110
00101110 01100111
01110101 01101001
01100100 00000000

Compiler

Assembler

Figure 10: A Visual Representation of the Relationships Between Lan-
guages

gram (no separate “compile” step)
– Disadvantage: Program executes slower since you wait for the

high-level statements to be translated then the program is ex-
ecuted

• Managed high-level languages (like C#)
– Combine features of compiled and interpreted languages
– Compiler translates high-level statements to intermediate lan-
guage instructions, not machine code
∗ Intermediate language: Looks like assembly language, but

not specific to any CPU
– run-time executes by interpreting the intermediate language

instructions - translates one at a time to machine code
∗ Faster since translation is partially done already (by com-

piler), only a simple “last step” is done when executing the
program

– Advantages of managed languages:
∗ In a “non-managed” language, a compiled program only

works on one OS + CPU combination (platform) because it
is machine code

∗ Managed-language programs can be reused on a differ-
ent platform without recompiling - intermediate language
is not machine code and not CPU-specific

∗ Still need to write an intermediate language interpreter for
each platform (so it produces the right machine code),
but, for a non-managed language, you must write a com-
piler for each platform

∗ Writing a compiler is more complicated and more work
than writing an interpreter thus an interpreter is a quicker

70

(and cheaper) way to put your language on different
platforms

∗ Intermediate-language interpreter is much faster than
a high-level language interpreter, so programs execute
faster than an “interpreted language” like Python

– This still executes slower than a non-managed language (due
to the interpreter), so performance-minded programmers use
non-managed compiled languages (e.g. for video games)

High-Level Language

Compiled printf("Hello, ");

printf("World!");

Interpreted print("Hello, ");

print("World!");

Managed Console.Write("Hello, ");

Console.Write("World!");

Intermediate Language

.maxstack 8

IL_0000: ldstr "Hello"

IL_0005: call void [mscorlib]

System.Console::WriteLine(string)

Machine Language

01000010 01001001

00000000 00101110

01000010 01001001

01000010 01001001

01000010 01001001

01000010 01001001

Output (on screen)

Hello, World!

Hello,

World!

Hello,

World!

Compiler

Compiler

Interpreter

Interpreter

Interpreter

Interpreter

Execution

Execution

Execution

Execution

Execution

Figure 11: A Visual Representation of the Differences Between High-Level
Languages

Software Concepts
• Flow of execution in a program

– Program receives input from some source, e.g. keyboard,
mouse, data in files

– Program uses input to make decisions
– Program produces output for the outside world to see, e.g. by

displaying images on screen, writing text to console, or saving
data in files

• Program interfaces
– GUI or Graphical User Interface: Input is from clicking mouse in

visual elements on screen (buttons, menus, etc.), output is by
drawing onto the screen

– CLI or Command Line Interface: Input is from text typed
into “command prompt” or “terminal window,” output is text
printed at same terminal window

– This class will use CLI because it is simple, portable, easy to work
with – no need to learn how to draw images, just read and write
text

71

Programmer

β-tester

User

Client

Write /
Edit Code

Does it
compile?

Debug

Run

Does it
”work”?

Success!

no

no

yes

yes

Test Match specification?

Figure 12: Flowchart demonstrating roles and tasks of a programmer,
beta tester and user in the creation of programs.

72

Programming Concepts
Programming workflow

The workflow of the programmer will differ a bit depending on if the pro-
gram is written in a compiled or an intprepreted programming language.
From the distance, both looks like what is pictured in the the flowchart
demonstrating roles and tasks of a programmer, beta tester and user in
the creation of programs, but some differences remain:

• Compiled language workflow
– Writing down specifications
– Creating the source code
– Running the compiler
– Reading the compiler’s output, warning and error messages
– Fixing compile errors, if necessary
– Executing and testing the program
– Debugging the program, if necessary

• Interpreted language workflow
– Writing down specifications
– Creating the source code
– Executing the program in the interpreter
– Reading the interpreter’s output, determining if there is a syntax

(language) error or the program finished executing
– Editing the program to fix syntax errors
– Testing the program (once it can execute with no errors)
– Debugging the program, if necessary

Interpreted languages have

• Advantages: Fewer steps between writing and executing, can be
a faster cycle

• Disadvantages: All errors happen when you execute the program,
no distinction between syntax errors (compile errors) and logic errors
(bugs in executing program)

(Integrated) Development Environment

Programmers can either use a collection of tools to write, compile, de-
bug and execute a program, or use an “all-in-one” solution called an
Integrated Development Environment (IDE).

• The “Unix philosophy”294 states that a program should do only one
task, and do it properly. For programmers, this means that

– One program will be needed to edit the source code, a text
editor (it can be Geany, notepad, kwrite, emacs, sublime text,

294https://www.wikiwand.com/en/Unix_philosophy

73

https://www.wikiwand.com/en/Unix_philosophy

vi, etc.),
– One program will be needed to compile the source code, a

compiler (for C#, it will be either mono295 or Roslyn296,
– Other programs may be needed to debug, execute, or orga-

nize larger projects, such as makefile or MKBundle297.

IDE “bundle” all of those functionality into a single interface, to ease the
workflow of the programmer. This means sometimes that programmers
have fewer control over their tools, but that it is easier to get started.

• Integrated Development Environment (IDE)
– Combines a text editor, compiler, file browser, debugger, and

other tools
– Helps you organize a programming project
– Helps you write, compile, and test code in one place

In particular, Visual Studio is an IDE, and it uses its own vocabulary:

• Solution: An entire software project, including source code, meta-
data, input data files, etc.

• “Build solution”: Compile all of your code
• “Start without debugging”: Execute the compiled code
• Solution location: The folder (on your computer’s file system) that

contains the solution, meaning all your code and the information
needed to compile and execute it

C# Fundamentals

Introduction to the C# Language

• C# is a managed language (as discussed previously298)
– Write in a high-level language, compile to intermediate lan-

guage, run intermediate language in interpreter
– Intermediate language is called CIL (Common Intermediate

Language)
– Interpreter is called .NET run-time
– Standard library is called .NET Framework, comes with the com-

piler and run-time
• It is widespread and popular

295https://www.wikiwand.com/en/Mono_(software)
296https://www.wikiwand.com/en/Roslyn_(compiler)
297https://www.mono-project.com/docs/tools+libraries/tools/mkbundle/
298https:/princomp.github.io/lectures/intro/computers_and_programming#programmi

ng-language-concepts

74

https://www.wikiwand.com/en/Mono_(software)
https://www.wikiwand.com/en/Roslyn_(compiler)
https://www.mono-project.com/docs/tools+libraries/tools/mkbundle/
https:/princomp.github.io/lectures/intro/computers_and_programming#programming-language-concepts
https:/princomp.github.io/lectures/intro/computers_and_programming#programming-language-concepts

– It is “programming language of the year 2023”299 in the very
well-respected TIOBE Index300.

– It was the first in the list of “3 Future Programming Languages
You Should Learn Between 2022 and 2030”301, because of the
growing popularity of Unity302.

– 7th most “desired / admired” language on StackOverflow303

– .NET is the first most used “other” library/framework304

– More insights on its evolution can be found in this blog post305.

The Object-Oriented Paradigm
• C# is called an “object-oriented” language

– Programming languages have different paradigms: philoso-
phies for organizing code, expressing ideas

– Object-oriented is one such paradigm, C# uses it
– Meaning of object-oriented: Program mostly consists of ob-
jects, which are reusable modules of code

– Each object contains some data (attributes) and some func-
tions related to that data (methods)

• Object-oriented terms
– Class: A blueprint or template for an object. Code that defines

what kind of data the object will contain and what operations
(functions) you will be able to do with that data

– Object: A single instance of a class, containing running code
with specific values for the data. Each object is a separate
“copy” based on the template given by the class.
Analogy: A class is like a floorplan while an object is the house
build from the floorplan. Plus, you can make as many houses
as you would like from a single floorplan.

– Attribute: A piece of data stored in an object.
Example: A House class has a spot for a color property while
an house object has a color (e.g. “Green”).

– Method: A function that modifies an object. This code is part
of the class, but when it is executed, it modifies only a specific
object and not the class.

299https://www.tiobe.com/tiobe-index/
300https://en.wikipedia.org/wiki/TIOBE_index
301https://betterprogramming.pub/3-future-programming-languages-you-should-learn-

between-2022-and-2030-8a618a15eca6
302https://unity.com/
303https://survey.stackoverflow.co/2023/#programming- scripting-and-markup-

languages
304https://survey.stackoverflow.co/2023/#most-popular-technologies-misc-tech
305https://dottutorials.net/stats-surveys-about-net-core-future-2020/#stackoverflow-

surveys

75

https://www.tiobe.com/tiobe-index/
https://en.wikipedia.org/wiki/TIOBE_index
https://betterprogramming.pub/3-future-programming-languages-you-should-learn-between-2022-and-2030-8a618a15eca6
https://betterprogramming.pub/3-future-programming-languages-you-should-learn-between-2022-and-2030-8a618a15eca6
https://unity.com/
https://survey.stackoverflow.co/2023/#programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2023/#programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2023/#most-popular-technologies-misc-tech
https://dottutorials.net/stats-surveys-about-net-core-future-2020/#stackoverflow-surveys
https://dottutorials.net/stats-surveys-about-net-core-future-2020/#stackoverflow-surveys

Example: A House class with a method to change the house
color. Using this method changes the color a single house ob-
ject but does not change the House class or the color on any
other house objects.

• Examples:
– A Car Class

∗ Attributes: Color, engine status (on/off), gear position
∗ Methods: Press gas or brake pedal, turn key on/off, shift

transmission
– A Car Object

Example: A Porsche911 object that is Red, Engine On, and in
1st gear

– An “Audio File”Class represents a song being played in a music
player
∗ Attributes: Sound wave data, current playback position,

target speaker device
∗ Methods: Play, pause, stop, fast-forward, rewind

– An Audio File Object
Example: A NeverGonnaGiveYouUp object that is “rolled
wave data”, 0:00, speaker01

First Program
It is customary to start the study of a programming language with a “Hello
World” program306, that simply displays “Hello World”. It is a simple way of
seeing a first, simple example of the basic structure of a program. Here’s
a simple “hello world” program in the C# language:

Hello World

!include code/snippets/helloWorld.cs

Features of this program:

• A multi-line comment: everything between the /* and */ is consid-
ered a comment, i.e. text for humans to read. It will be ignored by
the C# compiler and has no effect on the program.

• A using statement: This imports code definitions from the System
namespace, which is part of the .NET Framework (the standard li-
brary).

– In C#, code is organized into namespaces, which group re-
lated classes together

– If you want to use code from a different namespace, you need
a using statement to “import” that namespace

306https://www.wikiwand.com/en/%22Hello,_World!%22_program

76

https://www.wikiwand.com/en/%22Hello,_World!%22_program

– All the standard library code is in different namespaces from
the code you will be writing, so you’ll need using statements
to access it

• A class declaration307

– Syntax:

class [name of class]
{

[body of the class]
}

– All code between opening { and closing } is the body of the
class named by the class [name of class] statement

• A method declaration

– A collection of instructions with a name
– Can be used by typing its name
– A method is similar to a paragraph, in that it can contain multi-

ple statements, and a class is similar to a chapter, in that it can
have multiple methods within its body.

– A C# program requires a method called Main, and, in our ex-
ample, is followed by empty parentheses (we will get to those
later, but they are required)

– Just like the class declaration, the body of the method beings
with { and ends with }

• A statement inside the body of the method:

Console.WriteLine("Hello, world!"); // I'm an in-
line comment.

– This is the part of the program that actually “does something”:
It displays a line of text to the console:

307We use the notation […] to denote what “should” be there, but this is just a place holder:
you are not supposed to actually have the braces in the code.

77

– This statement contains a class name (Console), followed by
a method name (WriteLine). It calls the WriteLine method
in the Console class.

– The argument to the WriteLine method is the text “Hello,
world!”, which is in parentheses after the name of the method.
This is the text that gets printed in the console: The WriteLine
method (which is in the standard library) takes an argument
and prints it to the console.

– Note that the argument to WriteLine is inside double-quotes.
This means it is a string, i.e. textual data, not a piece of C# code.
The quotes are required in order to distinguish between text
and code.

– A statement must end in a semicolon (the class header and
method header are not statements)

• An in-line comment: All the text from the // to the end of the line is
considered a comment, and is ignored by the C# compiler.

Rules of C# Syntax
• Each statement must end in a semicolon (;), except for some state-

ments that we will study in the future that contains opening { and
closing }, that do not end in a ;.

– Note that class and method declarations, as well as comments,
are not statements308 and hence do not need to ends with a
;. Typically, a method contains some statements, but it is not a
statement.

308https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-
expressions-operators/statements

78

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements

• All words are case-sensitive
– A class named Program is not the same as one named pro-
gram

– A method named writeline is not the same as one named
WriteLine

• Braces and parentheses must always be matched
– Once you start a class or method definition with {, you must

end it with }
• Whitespace has almost no meaning

– “Whitespaces” refer to spaces (sometimes denoted “ ”, “␣” or
“⌴”), tabs309 (which consists in 4 spaces), and newlines (some-
times denoted “↵”, “↵” or “↵”)

– There must be at least 1 space between words
– Other than that, spaces and new lines are just to help humans

read the code
– Spaces are counted exactly if they are inside string data,

e.g. "Hello world!" is different from "Hello world!"
– Otherwise, entire program could be written on one line310; it

would have the same meaning
• All C# applications must have a Main method

– Name must match exactly, otherwise .NET run-time will get con-
fused

– This is the first code to execute when the application starts – any
other code (in methods) will only execute when its method is
called

Conventions of C# Programs
• Conventions: Not enforced by the compiler/language, but

expected by humans
– Program will still work if you break them, but other programmers

will be confused
• Indentation

– After a class or method declaration (header), put the opening
{ on a new line underneath it

– Then indent the next line by 4 spaces, and all other lines “inside”
the class or method body

– De-indent by 4 spaces at end of method body, so ending }
aligns vertically with opening {

– Method definition inside class definition: Indent body of
method by another 4 spaces

– In general, any code between { and } should be indented by
4 spaces relative to the { and }

309https://www.wikiwand.com/en/Tab_key#Tab_characters
310Well, if there are no in-line comments in it. Can you figure out why?

79

https://www.wikiwand.com/en/Tab_key#Tab_characters

• Code files
– C# code is stored in files that end with the extension “.cs”
– Each “.cs” file contains exactly one class
– The name of the file is the same as the name of the class (Pro-

gram.cs contains class Program)

Note that some of those conventions are actually rules in different pro-
gramming languages (typically, the last two regarding code files are
mandatory rules in java).

Reserved Words and Identifiers
• Reserved words: Keywords in the C# language

– Note they have a distinct color in the code sample and in your
IDE

– Built-in commands/features of the language
– Can only be used for one specific purpose; meaning cannot

be changed
– Examples:

∗ using
∗ class
∗ public
∗ private
∗ namespace
∗ this
∗ if
∗ else
∗ for
∗ while
∗ do
∗ return

– There is no need to memorize the whole list of keywords311, as
we will only introduce the ones we need on a “per need” basis.

• Identifiers: Human-chosen names
– Names for classes (Rectangle, ClassRoom, etc.), variables

(age, name, etc.), methods (ComputeArea, GetLength, etc),
namespaces, etc.

– Some have already been chosen for the standard library
(e.g. system, Console, WriteLine, Main), but they are still
identifiers, not keywords

– Rules for identifiers:
∗ Must not be a reserved word
∗ Must contain only letters (lower case, from a to z, or upper

case, from A to Z), numbers (made of digits from 0 to 9),
311https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/

80

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/

and underscore (_). But they cannot contain spaces.
∗ Must not begin with a number
∗ Are case sensitive
∗ Must be unique (you cannot re-use the same identifier

twice in the same scope – a concept we will discuss later)
– Conventions for identifiers

∗ Should be descriptive, e.g. “AudioFile” or “userInput”
not “a” or “x”

∗ Should be easy for humans to read and type
∗ If name is multiple words, use CamelCase312 (or its varia-

tion Pascal case313) to distinguish words, e.g. myHeight-
InMeters or distanceFromEarthToMoon.

∗ Class and method names should start with capitals,
e.g. “class AudioFile”

∗ Variable names should start with lowercase letters, then
capitalize subsequent words, e.g. “myFavoriteNumber”

Write and WriteLine
• The WriteLine method

– We saw this in the “Hello World” program: Console.WriteLine("Hello
World!"); results in “Hello World!” being displayed in the
terminal

– In general, Console.WriteLine("text"); will display the
text but not the “’s in the terminal, then start a new line

– This means a second Console.WriteLine will display its text
on the next line of the terminal. For example, this program:

!include code/snippets/writelineTwoLines.cs

will display the following output in the terminal:

Hello
World!

• Methods with multiple statements

– Note that our two-line example has a Main method with multi-
ple statements

– In C#, each statement must end in a semicolon
– Class and method declarations are not statements
– Each line of code in your .cs file is not necessarily a statement

312https://www.wikiwand.com/en/Camel_case
313https://www.c-sharpcorner.com/UploadFile/8a67c0/C-Sharp-coding-standards-and-

naming-conventions/

81

https://www.wikiwand.com/en/Camel_case
https://www.c-sharpcorner.com/UploadFile/8a67c0/C-Sharp-coding-standards-and-naming-conventions/
https://www.c-sharpcorner.com/UploadFile/8a67c0/C-Sharp-coding-standards-and-naming-conventions/

– A single invocation/call of the WriteLine method is a state-
ment

• The Write method

– Console.WriteLine("text") prints the text, then starts a
new line in the terminal – it effectively “hits enter” after printing
the text

– Console.Write("text") just prints the text, without starting
a new line. It’s like typing the text without hitting “enter” after-
wards.

– Even though two Console.Write calls are two statements,
and appear on two lines, they will result in the text being
printed on just one line. For example, this program:

!include code/snippets/writeTwoLines.cs

will display the following output in the terminal:

HelloWorld!

– Note that there is no space between “Hello” and “World!” be-
cause we did not type one in the argument to Console.Write

• Combining Write and WriteLine

– We can use both WriteLine and Write in the same program

– After a call to Write, the “cursor” is on the same line after the
printed text; after a call to WriteLine the “cursor” is at the
beginning of the next line

– This program:

!include code/snippets/writeAndWriteline.cs

will display the following output in the terminal:

Hello world!
Welcome to CSCI 1301!

Escape Sequences
• Explicitly writing a new line

– So far we’ve used WriteLine when we want to create a new
line in the output

– The escape sequence \n can also be used to create a new
line – it represents the “newline character,” which is what gets
printed when you type “enter”

82

– This program will produce the same output as our two-line
“Hello World” example, with each word on its own line:

!include code/snippets/writeWithNewline.cs

• Escape sequences in detail

– An escape sequence uses “normal” letters to represent “spe-
cial”, hard-to-type characters

– \n represents the newline character, i.e. the result of pressing
“enter”

– \t represents the tab character, which is a single extra-wide
space (you usually get it by pressing the “tab” key)

– \" represents a double-quote character that will get printed on
the screen, rather than ending the text string in the C# code.

∗ Without this, you couldn’t write a sentence with quotation
marks in a Console.WriteLine, because the C# compiler
would assume the quotation marks meant the string was
ending

∗ This program will not compile because in quotes is not
valid C# code, and the compiler thinks it is not part of the
string:

// Incorrect Code
class Welcome
{

static void Main()
{

Console.WriteLine("This is "in quotes"");
// This is parsed as if the string was "This is "
// followed by in quotes, which is not valid C#,

// followed by the empty string "".
}

}

∗ This program will display the sentence including the quota-
tion marks:

!include code/snippets/escapeQuotes.cs

– Note that all escape sequences begin with a backslash char-
acter (\), called the “escape character”

– General format is \[key letter] – the letter after the back-
slash is like a “keyword” indicating which special character to

83

display. You can refer to the full list on microsoft documenta-
tion314.

– If you want to put an actual backslash in your string, you need
the escape sequence \\, which prints a single backslash

∗ This will result in a compile error because \U is not a valid
escape sequence:

Console.WriteLine("Go to C:\Users\Edward");

∗ This will display the path correctly:

Console.WriteLine("Go to C:\\Users\\Edward");

Datatypes and Variables

Datatype Basics
• Recall the basic structure of a program

– Program receives input from some source, uses input to make
decisions, produces output for the outside world to see

– In other words, the program reads some data, manipulates
data, and writes out new data

– In C#, data is stored in objects during the program’s execution,
and manipulated using the methods of those objects

• This data has types
– Numbers (the number 2) are different from text (the word

“two”)
– Text data is called “strings” because each letter is a character

and a word is a string of characters
– Within “numeric data,” there are different types of numbers

∗ Natural numbers (ℕ): 0, 1, 2, …
∗ Integers (ℤ): … -2, -1, 0, 1, 2, …
∗ Real numbers (ℝ): 0.5, 1.333333…, -1.4, etc.

• Basic Datatypes in C#
– C# uses keywords to name the types of data
– Text data:

∗ string: a string of characters, like "Hello world!"
∗ char: a single character, like 'e' or 't'

– Numeric data:
∗ int: An integer, as defined previously
∗ uint: An unsigned integer, in other words, a natural num-

ber (positive integers only)
314https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/#string-

escape-sequences

84

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/#string-escape-sequences
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/#string-escape-sequences

∗ float: A “floating-point” number, which is a real number
with a fractional part, such as 3.85

∗ double: A floating-point number with “double precision” –
also a real number, but capable of storing more significant
figures

∗ decimal: An “exact decimal” number – also a real number,
but has fewer rounding errors than float and double (we
will explore the difference later) 315

Literals and Variables
Literals and their types

• A literal is a data value written in the code
• A form of “input” provided by the programmer rather than the user;

its value is fixed throughout the program’s execution
• Literal data must have a type, indicated by syntax:

– string literal: text in double quotes, like "hello"
– char literal: a character in single quotes, like 'a'
– int literal: a number without a decimal point, with or without

a minus sign (e.g. 52)
– long literal: just like an int literal but with the suffix lor L, e.g. 4L
– double literal: a number with a decimal point, with or without

a minus sign (e.g. -4.5)
– float literal: just like a double literal but with the suffix f or F

(for “float”), e.g. 4.5f
– decimal literal: just like a double literal but with the suffix m or
M(for “deciMal”), e.g. 6.01m

Variables overview

• Variables store data that can vary (change) during the program’s
execution

• They have a type, just like literals, and also a name

• You can use literals to write data that gets stored in variables

• Sample program with variables:
315At this point, you may wonder “why don’t we always use the most precise datatype

instead of using imprecise ones?”. There are three dimensions to consider to answer this
question: first, using decimal takes more memory, hence more time, than the other nu-
merical datatypes. Second, they are a bit more cumbersome to manipulate, as we will
see later on. Last, you generally don’t need to be that precise: for example, it would not
make sense to use a floating-point number to account for human beings or other indivisi-
ble units. Even decimal may be an overkill for floating-point values sometimes: for instance,
the NASA uses 3.141592653589793 as an approximation of pi316 for their calculations. A
double can hold such a value317, so there is no need to be more precise.

85

!include code/snippets/myFirstVariables.cs

This program shows three major operations you can do with vari-
ables.

– First it declares two variables, an int-type variable named
“myAge” and a string-type variable named “myName”

– Then, it assigns values to each of those variables, using literals
of the same type. myAge is assigned the value 29, using the int
literal 29, and myName is assigned the value “Edward”, using the
string literal "Edward"

– Finally, it displays the current value of each variable by using
the Console.WriteLine method and string interpolation, in
which the values of variables are inserted into a string by writing
their names with some special syntax (a $ character at the be-
ginning of the string, and braces around the variable names)

Variable Operations
Declaration

• This is when you specify the name of a variable and its type
• The syntax is the type keyword, a space, the name of the variable,

then a semi-colon.
• Examples: int myAge;, string myName;, double winChance;.
• A variable name is an identifier, so it should follow the rules and

conventions
– Can only contain letters and numbers
– Must be unique among all variable, method, and class names
– Should use CamelCase if it contains multiple words

• Note that the variable’s type is not part of its name: two variables
cannot have the same name even if they are different types

• Multiple variables can be declared in the same statement: string
myFirstName, myLastName; would declare two strings called re-
spectively myFirstName and myLastName

Assignment

• The act of changing the value of a variable
• Uses the symbol =, which is the assignment operator, not a state-

ment of equality – it does not mean “equals”
• Direction of assignment is right to left: the variable goes on the left

side of the = symbol, and its new value goes on the right
• Syntax: variable_name = value;
• Example: myAge = 29;

86

• Value must match the type of the variable. If myAge was declared
as an int-type variable, you cannot write myAge = "29"; because
"29" is a string

Initialization (Declaration + Assignment)

• Initialization statement combines declaration and assignment in
one single statement (it is just a shortcut, a.k.a. some “syntactical
sugar”318, and not something new)

• Creates a new variable and also gives it an initial value
• The syntax is the datatype of the variable, the name of the variable,

the = sign, the value we want to store, and a semi-colon
• Example: string myName = "Edward";
• Can only be used once per variable, since you can only declare a

variable once

Assignment Details

• Assignment replaces the “old” value of the variable with a “new”
one; it is how variables vary

– If you initialize a variable with int myAge = 29; and then write
myAge = 30;, the variable myAge now stores the value 30

• You can assign a variable to another variable: just write a variable
name on both sides of the = operator

– This will take a “snapshot” of the current value of the variable
on the right side, and store it into the variable on the left side

– For example, in this code:

int a = 12;
int b = a;
a = -5;

the variable b gets the value 12, because that’s the value that
a had when the statement int b = a was executed. Even
though a was then changed to -5 afterward, b is still 12.

Displaying

• Only text (strings) can be displayed in the console
• When we want to print a mixture of text and variables with Con-
sole.WriteLine, we need to convert all of them to a string

• String interpolation: a mechanism for converting a variable’s value
to a string and inserting it into the main string

318https://www.wikiwand.com/en/Syntactic_sugar

87

https://www.wikiwand.com/en/Syntactic_sugar

– Syntax: $"text {variable} text" – begin with a $ symbol,
then put variable’s name inside brackets within the string

– Example: $"I am {myAge} years old"
– When this line of code is executed, it reads the variable’s cur-

rent value, converts it to a string (29 becomes "29"), and in-
serts it into the surrounding string

– Displayed: I am 29 years old
• If the argument to Console.WriteLine is the name of a variable, it

will automatically convert that variable to a string before display-
ing it

• For example, Console.WriteLine(myAge); will display “29” in the
console, as if we had written Console.WriteLine($"{myAge}");

• When string interpolation converts a variable to a string, it must
call a “string conversion” method supplied with the data type (int,
double, etc.). All built-in C# datatypes come with string conversion
methods, but when you write your own data types (classes), you’ll
need to write your own string conversions – string interpolation will
not magically “know” how to convert MyClass variables to strings

On a final note, observe that you can write statements mixing multiple
declarations and assignments, as in int myAge = 10, yourAge, ageD-
ifference; that declares three variables of type int and set the value
of the first one. It is generally recommended to separate those instruc-
tions in different statements as you begin, to ease debugging and have
a better understanding of the “atomic steps” your program should per-
form.

Format Specifiers
• Formats for displaying numbers

– There are lots of possible ways to display a number, especially
a fraction (how many decimal places to use?)

– String interpolation has a default way to format numbers, but
it might not always be the best

– For example, consider this program:
decimal price = 19.99m;
decimal discount = 0.25m;
decimal salePrice = price – discount * price;
Console.WriteLine($"{price} with a discount of " +

$"{discount} is {salePrice}");
It will display this output:
19.99 with a discount of 0.25 is 14.9925
But this isn’t the best way to display prices and discounts. Ob-
viously, the prices should have dollar signs, but also, it does not
make sense to show a price with fractional cents (14.9925) – it
should be rounded to two decimal places. You might also pre-

88

fer to display the discount as 25% instead of 0.25, since people
usually think of discounts as percentages.

• Improving interpolation with format specifiers
– You can change how numbers are displayed by adding a for-

mat specifier to a variable’s name in string interpolation
– Format specifier: A special letter indicating how a numeric

value should be converted to a string
– General format is {[variable]:[format specifier]},

e.g. {numVar:N}
– Common format specifiers:

Format
specifier Description

N or n Adds a thousands separator, displays 2 decimal
places (by default)

E or e Uses scientific notation, displays 6 decimal
places (by default)

C or c Formats as currency: Adds a currency symbol,
adds thousands separator, displays 2 decimal
places (by default)

P or p Formats as percentage with 2 decimal places
(by default)

– Example usage with our “discount” program:
decimal price = 19.99m;
decimal discount = 0.25m;
decimal salePrice = price – discount * price;
Console.WriteLine($"{price:C} with a discount of " +

$"{discount:P} is {salePrice:C}");
will display
$19.99 with a discount of 25.00% is $14.99

• Format specifiers with custom rounding
– Each format specifier uses a default number of decimal places,

but you can change this with a precision specifier
– Precision specifier: A number added after a format specifier

indicating how many digits past the decimal point to display
– Format is {[variable]:[format specifier][precision
specifier]}, e.g. {numVar:N3}. Note there is no space or
other symbol between the format specifier and the preci-
sion specifier, and the number can be more than one digit
({numVar:N12} is valid)

– Examples:
∗ Given the declarations

double bigNumber = 1537963.666;
decimal discount = 0.1337m;

89

Statement Display

Console.WriteLine($"{bigNumber:N}"); 1,537,963.67
Console.WriteLine($"{bigNumber:N3}"); 1,537,963.666
Console.WriteLine($"{bigNumber:N1}"); 1,537,963.7
Console.WriteLine($"{discount:P1}"); 13.4%
Console.WriteLine($"{discount:P4}"); 13.3700%
Console.WriteLine($"{bigNumber:E}"); 1.537964E+006
Console.WriteLine($"{bigNumber:E2}"); 1.54E+006

Variables in Memory
• A variable names a memory location
• Data is stored in memory (RAM), so a variable “stores data” by stor-

ing it in memory
• Declaring a variable reserves a memory location (address) and

gives it a name
• Assigning to a variable stores data to the memory location (ad-

dress) named by that variable

Sizes of Numeric Datatypes

• Numeric datatypes have different sizes
• Amount of memory used/reserved by each variable depends on

the variable’s type
• Amount of memory needed for an integer data type depends on

the size of the number
– int uses 4 bytes of memory, can store numbers in the range

[−231, 231 − 1]
– long uses 8 bytes of memory can store numbers in the range

[−263, 263 − 1]
– short uses 2 bytes of memory, can store numbers in the range

[−215, 215 − 1]
– sbyte uses only 1 bytes of memory, can store numbers in the

range [−128, 127]
• Unsigned versions of the integer types use the same amount of

memory, but can store larger positive numbers
– byte uses 1 byte of memory, can store numbers in the range

[0, 255]
– ushort uses 2 bytes of memory, can store numbers in the range

[0, 216 − 1]
– uint uses 4 bytes of memory, can store numbers in the range

[0, 232 − 1]
– ulong uses 8 bytes of memory, can store numbers in the range

90

[0, 264 − 1]
– This is because in a signed integer, one bit (digit) of the binary

number is needed to represent the sign (+ or -). This means
the actual number stored must be 1 bit smaller than the size
of the memory (e.g. 31 bits out of the 32 bits in 4 bytes). In an
unsigned integer, there is no “sign bit”, so all the bits can be
used for the number.

• Amount of memory needed for a floating-point data type depends
on the precision (significant figures) of the number

– float uses 4 bytes of memory, can store positive or negative
numbers in a range of approximately [10−45, 1038], with 7 sig-
nificant figures of precision

– double uses 8 bytes of memory, and has both a wider range
(10−324 to 10308) and more significant figures (15 or 16)

– decimal uses 16 bytes of memory, and has 28 or 29 signifi-
cant figures of precision, but it actually has the smallest range
(10−28 to 1028) because it stores decimal fractions exactly

• Difference between binary fractions and decimal fractions
– float and double store their data as binary (base 2) fractions,

where each digit represents a power of 2
∗ The binary number 101.01 represents 4 + 1 + 1/4, or 5.25

in base 10
– More specifically, they use binary scientific notation: A man-

tissa (a binary integer), followed by an exponent assumed to
be a power of 2, which is applied to the mantissa
∗ 10101e-10 means a mantissa of 10101 (i.e. 21 in base 10)

with an exponent of -10 (i.e. 2−2 in base 10), which also
produces the value 101.01 or 5.25 in base 10

– Binary fractions cannot represent all base-10 fractions, be-
cause they can only represent fractions that are negative
powers of 2. 1/10 is not a negative power of 2 and cannot
be represented as a sum of 1/16, 1/32, 1/64, etc.

– This means some base-10 fractions will get “rounded” to the
nearest finite binary fraction, and this will cause errors when
they are used in arithmetic

– On the other hand, decimal stores data as a base-10 fraction,
using base-10 scientific notation

– This is slower for the computer to calculate with (since com-
puters work only in binary) but has no “rounding errors” with
fractions that include 0.1

– Use decimal when working with money (since money uses a
lot of 0.1 and 0.01 fractions), double when working with non-
money fractions

Summary of numeric data types and sizes:

91

Type Size Range of Values Precision

sbyte 1 bytes −128…127 N/A
byte 1 bytes 0…255 N/A
short 2 bytes −215…215 − 1 N/A
ushort 2 bytes 0…216 − 1 N/A
int 4 bytes −231…231 − 1 N/A
uint 4 bytes 0…232 − 1 N/A
long 8 bytes −263…263 − 1 N/A
ulong 8 bytes 0…264 − 1 N/A
float 4 bytes ±1.5 ⋅ 10−45… ±

3.4 ⋅ 1038
7 digits

double 8 bytes ±5.0 ⋅ 10−324… ±
1.7 ⋅ 10308

15-16 digits

decimal 16 bytes ±1.0 ⋅ 10−28… ±
7.9 ⋅ 1028

28-29 digits

Value and Reference types

• Value and reference types are different ways of storing data in
memory

• Variables name memory locations, but the data that gets stored at
the named location is different for each type

• For a value type variable, the named memory location stores the
exact data value held by the variable (just what you’d expect)

• Value types: all the numeric types (int, float, double, decimal,
etc.), char, and bool

• For a reference type variable, the named memory location stores
a reference to the data, not the data itself

– The contents of the memory location named by the variable
are the address of another memory location

– The other memory location is where the variable’s data is
stored

– To get to the data, the computer first reads the location named
by the variable, then uses that information (the memory ad-
dress) to find and read the other memory location where the
data is stored

• Reference types: string, object, and all objects you create from
your own classes

• Assignment works differently for reference types

92

– Assignment always copies the value in the variable’s named
memory location - but in the case of a reference type that’s
just a memory address, not the data

– Assigning one reference-type variable to another copies the
memory address, so now both variables “refer to” the same
data

– Example:

string word = "Hello";
string word2 = word;

Both word and word2 contain the same memory address,
pointing to the same memory location, which contains the
string “Hello”. There is only one copy of the string “Hello”;
word2 does not get its own copy.

Operators

Arithmetic Operators
Variables can be used to do math. All the usual arithmetic operations
are available in C#:

Operation C# Operator C# Expression

Addition + myVar + 7
Subtraction - myVar - 7
Multiplication * myVar * 7
Division / myVar / 7
Remainder (a.k.a. modulo) % myVar % 7

Note: the “remainder” or “modulo” operator represents the remainder
after doing integer division between its two operands.
For example, 44 % 7 = 2 because 44/7 = 6 when rounded down, then do
7*6 to get 42 and 44 - 42 = 2.

Arithmetic and variables
• The result of an arithmetic expression (like those shown in the table)

is a numeric value

– For example, the C# expression 3 * 4 has the value 12, which
is int data

93

• A numeric value can be assigned to a variable of the same type,
just like a literal: int myVar = 3 * 4; initializes the variable myVar
to contain the value 12

• A numeric-type variable can be used in an arithmetic expression

• When a variable is used in an arithmetic expression, its current value
is read, and the math is done on that value

• Example:

int a = 4;
int b = a + 5;
a = b * 2;

– To execute the second line of the code, the computer will first
evaluate the expression on the right side of the = sign. It reads
the value of the variable a, which is 4, and then computes the
result of 4 + 5, which is 9. Then, it assigns this value to the
variable b (remember assignment goes right to left).

– To execute the third line of code, the computer first evaluates
the expression on the right side of the = sign, which means read-
ing the value of b to use in the arithmetic operation. b contains
9, so the expression is 9 * 2, which evaluates to 18. Then it
assigns the value 18 to the variable a, which now contains 18
instead of 4.

• A variable can appear on both sides of the = sign, like this:

int myVar = 4;
myVar = myVar * 2;

This looks like a paradox because myVar is assigned to itself, but it
has a clear meaning because assignment is evaluated right to left.
When executing the second line of code, the computer evaluates
the right side of the = before doing the assignment. So it first reads
the current (“old”) value of myVar, which is 4, and computes 4 *
2 to get the value 8. Then, it assigns the new value to myVar, over-
writing its old value.

Compound assignment operators
• The pattern of “compute an expression with a variable, then assign

the result to that variable” is common, so there are shortcuts for
doing it

• The compound assignment operators change the value of a vari-
able by adding, subtracting, etc. from its current value, equivalent
to an assignment statement that has the value on both sides:

94

Statement Equivalent

x += 2; x = x + 2;
x -= 2; x = x - 2;
x *= 2; x = x * 2;
x /= 2; x = x / 2;
x %= 2; x = x % 2;

Increment and Decrement Operators
Increment and decrement basics

• In C#, we have already seen multiple ways to add 1 to a numeric
variable:

int myVar = 1;
myVar = myVar + 1;
myVar += 1

These two lines of code have the same effect; the += operator is “short-
hand” for “add and assign”

• The increment operator, ++, is an even shorter way to add 1 to a
variable. It can be used in two ways:

myVar++;
++myVar;

• Writing ++ after the name of the variable is called a postfix incre-
ment, while writing ++ before the name of the variable is called a
prefix increment. They both have the same effect on the variable:
its value increases by 1.

• Similarly, there are multiple ways to subtract 1 from a numeric vari-
able:

int myVar = 10;
myVar = myVar - 1;
myVar -= 1;

• The decrement operator, --, is a shortcut for subtracting 1 from a
variable, and is used just like the increment operator:

myVar--;
--myVar;

• To summarize, the increment and decrement operators both have
a prefix and postfix version:

95

Increment Decrement

Postfix myVar++ myVar--
Prefix ++myVar --myVar

Difference between prefix and postfix

• The prefix and postfix versions of the increment and decrement op-
erators both have the same effect on the variable: Its value in-
creases or decreases by 1

• The difference between prefix and postfix is whether the “old” or
“new” value of the variable is returned by the expression

• With postfix increment/decrement, the operator returns the value
of the variable, then increases/decreases it by 1

• This means the value of the increment/decrement expression is the
old value of the variable, before it was incremented/decremented

• Consider this example:

int a = 1;
Console.WriteLine(a++);
Console.WriteLine(a--);

• The expression a++ returns the current value of a, which is 1, to be
used in Console.WriteLine. Then it increments a by 1, giving it a
new value of 2. Thus, the first Console.WriteLine displays “1” on the
screen.

• The expression a-- returns the current value of a, which is 2, to be
used in Console.WriteLine, and then decrements a by 1. Thus, the
second Console.WriteLine displays “2” on the screen.

• With prefix increment/decrement, the operator increases/decreases
the value of the variable by 1, then returns its value

• This means the value of the increment/decrement expression is the
new value of the variable, after the increment/decrement

• Consider the same code, but with prefix instead of postfix operators:

int a = 1;
Console.WriteLine(++a);
Console.WriteLine(--a);

• The expression ++a increments a by 1, then returns the value of a for
use in Console.WriteLine. Thus, the first Console.WriteLine displays
“2” on the screen.

96

• The expression --a decrements a by 1, then returns the value of
a for use in Console.WriteLine. Thus, the second Console.WriteLine
displays “1” on the screen.

Using increment/decrement in expressions

• The ++ and -- operators have higher precedence than the other
math operators, so if you use them in an expression they will get
executed first

• The “result” of the operator, i.e. the value that will be used in the
rest of the math expression, depends on whether it is the prefix or
postfix increment/decrement operator: The prefix operator returns
the variable’s new value, while the postfix operator returns the vari-
able’s old value

• Consider these examples:

int a = 1;
int b = a++;
int c = ++a * 2 + 4;
int d = a-- + 1;

• The variable b gets the value 1, because a++ returns the “old” value
of a (1) and then increments a to 2

• In the expression ++a * 2 + 4, the operator ++a executes first,
and it returns the new value of a, which is 3. Then the multiplication
executes (3 * 2, which is 6), then the addition (6 + 4, which is 10).
Thus c gets the value 10.

• In thee expression a-- + 1, the operator a-- executes first, and it
returns the old value of a, which is 3 (even though a is now 2). Then
the addition executes, so d gets the value 4.

Arithmetic on Mixed Data Types
• The math operators (+, -, *, /) are defined separately for each data

type: There is an int version of + that adds ints, a float version
of + that adds floats, etc.

• Each operator expects to get two values of the same type on each
side, and produces a result of that same type. For example, 2.25
+ 3.25 uses the double version of +, which adds the two double
values to produce a double-type result, 5.5.

• Most operators have the same effect regardless of their type, ex-
cept for /

• The int/short/long version of / does integer division, which re-
turns only the quotient and drops the remainder: In the statement

97

int result = 21 / 5;, the variable result gets the value 4, be-
cause 21 ÷ 5 is 4 with a remainder of 1. If you want the fractional
part, you need to use the floating-point version (for float, double,
and decimal): double fracDiv = 21.0 / 5.0; will initialize
fracDiv to 4.2.

Implicit conversions in math

• If the two operands/arguments to a math operator are not the
same type, they must become the same type – one must be
converted

• C# will first try implicit conversion to “promote” a less-precise or
smaller value to a more precise, larger type

• Example: with the expression double fracDiv = 21 / 2.4;
– Operand types are int and double
– int is smaller/less-precise than double
– 21 gets implicitly converted to 21.0, a double value
– Now the operands are both double type, so the double ver-

sion of the / operator gets executed
– The result is 8.75, a double value, which gets assigned to the

variable fracDiv
• Implicit conversion also happens in assignment statements, which

happen after the math expression is computed
• Example: with the expression double fraction = 21 / 5;

– Operand types are int and int
– Since they match, the int version of / gets executed
– The result is 4, an int value
– Now this value is assigned to the variable fraction, which is
double type

– The int value is implicitly converted to the double value 4.0,
and fraction is assigned the value 4.0

Explicit conversions in math

• If the operands are int type, the int version of / will get called,
even if you assign the result to a double

• You can “force” floating-point division by explicitly converting one
operand to double or float

• Example:

int numCookies = 21;
int numPeople = 6;
double share = (double) numCookies / numPeople;

98

Without the cast, sharewould get the value 3.0 because numCook-
iesand numPeopleare both int type (just like the fractionexam-
ple above). With the cast, numCookies is converted to the value
21.0 (a double), which means the operands are no longer the same
type. This will cause numPeople to be implicitly converted to dou-
ble in order to make them match, and the double version of / will
get called to evaluate 21.0 / 6.0. The result is 3.5, so share gets
assigned 3.5.

• You might also need a cast to ensure the operands are the same
type, if implicit conversion does not work

• Example:

decimal price = 3.89;
double shares = 47.75;
decimal total = price * (decimal) shares;

In this code, double cannot be implicitly converted to decimal,
and decimal cannot be implicitly converted to double, so the mul-
tiplication price * shares would produce a compile error. We
need an explicit cast to decimal to make both operands the same
type (decimal).

Order of Operations
• Math operations in C# follow PEMDAS from math class: Parentheses,

Exponents, Multiplication, Division, Addition, Subtraction
– Multiplication/division are evaluated together, as are addi-

tion/subtraction
– Expressions are evaluated left-to-right
– Example: int x = 4 = 10 * 3 - 21 / 2 - (3 + 3);

∗ Parentheses: (3 + 3) is evaluated, returns 6
∗ Multiplication/Division: 10 * 3 is evaluated to produce 30,

then 21 / 2 is evaluated to produce 10 (left-to-right)
∗ Addition/Subtraction: 4 + 30 - 10 - 6 is evaluated, result is 18

• Cast operator is higher priority than all binary operators
– Example: double share = (double) numCookies /
numPeople;
∗ Cast operator is evaluated first, converts numCookies to a

double
∗ Division is evaluated next, but operand types do not match
∗ numPeople is implicitly converted to double to make

operand types match
∗ Then division is evaluated, result is 21.0 / 6.0 = 3.5

• Parentheses always increase priority, even with casts

99

– An expression in parentheses gets evaluated before the cast
“next to” it

– Example:
int a = 5, b = 4;
double result = (double) (a / b);
The expression in parentheses gets evaluated first, then the re-
sult has the (double) cast applied to it. That means a / b is
evaluated to produce 1, since a and b are both int type, and
then that result is cast to a double, producing 1.0.

Conversions

We now discuss implicit and explicit conversions between datatypes:
how C# can (or not!) convert a value from one datatype to another,
and how we can “force” this conversion if C# does not do it automati-
cally.

Assignments from different types

• The “proper” way to initialize a variable is to assign it a literal of the
same type:

int myAge = 29;
double myHeight = 1.77;
float radius = 2.3f;

Note that 1.77 is a double literal, while 2.3f is a float literal

• If the literal is not the same type as the variable, you will sometimes
get an error – for example, float radius = 2.3 will result in a
compile error – but sometimes, it appears to work fine: for example
float radius = 2; compiles and executes without error even
though 2 is an int value.

• In fact, the value being assigned to the variable must be the same
type as the variable, but some types can be implicitly converted
to others

Implicit conversions

• Implicit conversion allows variables to be assigned from literals of
the “wrong” type: the literal value is first implicitly converted to the
right type

• In the statement float radius = 2;, the int value 2 is implicitly
converted to an equivalent float value, 2.0f. Then the computer
assigns 2.0f to the radius variable.

100

• Implicit conversion also allows variables to be assigned from other
variables that have a different type:

int length = 2;
float radius = length;

When the computer executes the second line of this code, it reads the
variable length to get an int value 2. It then implicitly converts that
value to 2.0f, and then assigns 2.0f to the float-type variable radius.

• Implicit conversion only works between some data types: a value
will only be implicitly converted if it is “safe” to do so without losing
data

• Summary of possible implicit conversions:

Type Possible Implicit Conversions

short int, long, float, double, decimal
int long, float, double, decimal
long float, double, decimal
ushort uint, int, ulong, long, decimal, float, double
uint ulong, long, decimal, float, double
ulong decimal, float, double
float double

• In general, a data type can only be implicitly converted to one with
a larger range of possible values

• Since an int can store any integer between −231 and 231−1, but
a float can store any integer between −3.4 × 1038 and 3.4 ×
1038 (as well as fractional values), it is always safe to store an int
value in a float

• You cannot implicitly convert a float to an int because an int
stores fewer values than a float – it cannot store fractions – so con-
verting a float to an int will lose data

• Note that all integer data types can be implicitly converted to
float or double

• Each integer data type can be implicitly converted to a larger in-
teger type: short → int → long

• Unsigned integer data types can be implicitly converted to a larger
signed integer type, but not the same signed integer type: uint→
long, but not uint → int

• This is because of the “sign bit”: a uint can store larger values than
an int because it does not use a sign bit, so converting a large
uint to an int might lose data

101

Explicit conversions

• Any conversion that is “unsafe” because it might lose data will not
happen automatically: you get a compile error if you assign a dou-
ble variable to a float variable

• If you want to do an unsafe conversion anyway, you must perform
an explicit conversion with the cast operator

• Cast operator syntax: ([type name]) [variable or value]
– the cast is “right-associative”, so it applies to the variable to the
right of the type name

• Example: (float) 2.8 or (int) radius

• Explicit conversions are often used when you (the programmer)
know the conversion is actually “safe” – data will not actually be
lost

• For example, in this code, we know that 2.886 is within the range of
a float, so it is safe to convert it to a float:

float radius = (float) 2.886;

The variable radius will be assigned the value 2.886f.

• For example, in this code, we know that 2.0 is safe to convert to an
int because it has no fractional part:

double length = 2.0;
int height = (int) length;

The variable height will be assigned the value 2.

• Explicit conversions only work if there exists code to perform the
conversion, usually in the standard library. The cast operator isn’t
“magic” – it just calls a method that is defined to convert one type
of data (e.g. double) to another (e.g. int).

• All the C# numeric types have explicit conversions to each other
defined

• string does not have explicit conversions defined, so you cannot
write int myAge = (int) "29";

• If the explicit conversion is truly unsafe (will lose data), data is lost in
a specific way

• Casting from floating-point (e.g. double) types to integer types:
fractional part of number is truncated (ignored/dropped)

• In int length = (int) 2.886;, the value 2.886 is truncated to 2
by the cast to int, so the variable length gets the value 2.

102

• Casting from more-precise to less-precise floating point type: num-
ber is rounded to nearest value that fits in less-precise type:

decimal myDecimal = 123456789.999999918m;
double myDouble = (double) myDecimal;
float myFloat = (float) myDouble;

In this code, myDouble gets the value 123456789.99999993, while
myFloat gets the value 123456790.0f, as the original decimal value is
rounded to fit types with fewer significant figures of precision.

• Casting from a larger integer to a smaller integer: the most signifi-
cant bits are truncated – remember that numbers are stored in bi-
nary format

• This can cause weird results, since the least-significant bits of a num-
ber in binary do not correspond to the least significant digits of the
equivalent base-10 number

• Casting from another floating point type to decimal: Either
value is stored precisely (no rounding), or program crashes with
System.OverflowException if value is larger than decimal’s
maximum value:

decimal fromSmall = (decimal) 42.76875;
double bigDouble = 2.65e35;
decimal fromBig = (decimal) bigDouble;

In this code, fromSmall will get the value 42.76875m, but the program
will crash when attempting to cast bigDouble to a decimal because
2.65 × 1035 is larger than decimal’s maximum value of 7.9 × 1028

• decimal is more precise than the other two floating-point types
(thus does not need to round), but has a smaller range (only 1028,
vs. 10308)

Summary of implicit and explicit conversions for the numeric datatypes:

Refer to the “Result Type of Operations” chart from the cheatsheet319 for
more detail.

Inputs and Outputs

Reading Input from the User
• Input and output in CLI

319https:/princomp.github.io/docs/programming_and_computer_usage/datatypes_in
_csharp

103

https:/princomp.github.io/docs/programming_and_computer_usage/datatypes_in_csharp
https:/princomp.github.io/docs/programming_and_computer_usage/datatypes_in_csharp

int float double decimal

Implicit conversion

Explicit conversion (rounding) Explicit conversion (truncating)

Explicit conversion

Figure 13: “Implicit and Explicit Conversion Between Datatypes”

– Our programs use a command-line interface, where input and
output come from text printed in a “terminal” or “console”

– We’ve already seen that Console.WriteLine prints text from
your program on the screen to provide output to the user

– The equivalent method for reading input is Console.ReadLine(),
which waits for the user to type some text in the console and
then returns it to your program

– In general, the Console class represents the command-line in-
terface

• Using Console.ReadLine()
– Example usage:
!include code/snippets/personalizedWelcome.cs
This program first declares a string variable named first-
Name. On the second line, it uses Console.WriteLine to dis-
play a message (instructions for the user). On the third line, it
calls the Console.ReadLine() method, and assigns its return
value (result) to the firstName variable. This means the pro-
gram waits for the user to type some text and press “Enter”,
and then stores that text in firstName. Finally, the program
uses string interpolation in Console.WriteLine to display a
message including the contents of the firstName variable.

– Console.ReadLine is the “inverse” of Console.WriteLine,
and the way you use it is also the “inverse”

– While Console.WriteLine takes an argument, which is the
text you want to display on the screen, Console.ReadLine()

104

takes no arguments because it does not need any input from
your program – it will always do the same thing

– Console.WriteLine has no “return value” - it does not give
any output back to your program, and the only effect of calling
it is that text is displayed on the screen

– Console.ReadLine() does have a return value, specifically a
string. This means you can use the result of this method to
assign a string variable, just like you can use the result of an
arithmetic expression to assign a numeric variable.

– The string that Console.ReadLine() returns is one line of
text typed in the console. When you call it, the computer will
wait for the user to type some text and then press “Enter”, and
everything the user typed before pressing “Enter” gets returned
from Console.ReadLine()

Parsing user input

• Console.ReadLine() always returns the same type of data, a
string, regardless of what the user enters

– If you ask the user to enter a number, ReadLine will output that
number as a string

– For example, if you ask the user to enter his/her age, and the
user enters 21, Console.ReadLine() will return the string "21"

• If we want to do any kind of arithmetic with a number provided by
the user, we will need to convert that string to a numeric type like
int or double. Remember that casting cannot be used to convert
numeric data to or from string data.

• When converting numeric data to string data, we use string inter-
polation:

int myAge = 29;
//This does not work:
//string strAge = (string) myAge;
string strAge = $"{myAge}";

• In the other direction, we use a method called Parse to convert
strings to numbers:

string strAge = "29";
//This does not work:
//int myAge = (int) strAge;
int myAge = int.Parse(strAge);

• The int.Parse method takes a string as an argument, and re-
turns an int containing the numeric value written in that string

105

• Each built-in numeric type has its own Parse method

– int.Parse("42") returns the value 42
– long.Parse("42") returns the value 42L
– double.Parse("3.65") returns the value 3.65
– float.Parse("3.65") returns the value 3.65f
– decimal.Parse("3.65") returns the value 3.65m

• The Parse methods are useful for converting user input to useable
data. For example, this is how to get the user’s age as an int:

Console.WriteLine("Enter your age:");
string ageString = Console.ReadLine();
int age = int.Parse(ageString);

More detail on the Parsemethods

• Console.WriteLine is a method that takes input from your pro-
gram, in the form of an argument, but does not return any output.
Meanwhile, Console.ReadLine is a method that does not have
any arguments, but it returns output to your program (the user’s
string).

• int.Parse is a method that both takes input (the string argu-
ment) and returns output (the converted int value)

• When executing a statement such as

int answer = int.Parse("42");

the computer must evaluate the expression on the right side of the
= operator before it can do the assignment. This means it calls the
int.Parse method with the string "42" as input. The method’s
code then executes, converting "42" to an integer, and it returns
a result, the int value 42. This value can now be assigned to the
variable answer.

• Since the return value of a Parse method is a numeric type, it can
be used in arithmetic expressions just like a numeric-type variable
or literal. For example, in this statement:

double result = double.Parse("3.65") * 4;

To evaluate the expression on the right side of the = operator, the
computer must first call the method double.Parse with the input
"3.65". Then the method’s return value, 3.65, is used the math
operation as if it was written 3.65 * 4. So the computer implic-
itly converts 4 to a double value, performs the multiplication on
doubles, and gets the resulting value 14.6, which it assigns to the
variable result.

106

• Another example of using the result of Parse to do math:

Console.WriteLine("Please enter the year.");
string userInput = Console.ReadLine();
int curYear = int.Parse(userInput);
Console.WriteLine($"Next year it will be {curYear + 1}");

Note that in order to do arithmetic with the user’s input (i.e. add
1), it must be a numeric type (i.e. int), not a string. This is
why we often call a Parse method on the data returned by
Console.ReadLine().

• The previous example can be made shorter and simpler by com-
bining the Parse and ReadLine methods in one statement. Specif-
ically, you can write:

int curYear = int.Parse(Console.ReadLine());

In this statement, the return value (output) of one method is used as
the argument (input) to another method. When the computer ex-
ecutes the statement, it starts by evaluating the int.Parse(...)
method call, but it cannot actually execute the Parse method
yet because its argument is an expression, not a variable or value.
In order to determine what value to send to the Parse method
as input, it must first evaluate the Console.ReadLine() method
call. Since this method has no arguments, the computer can
immediately start executing it; the ReadLine method waits for
the user to type a line of text, then returns that text as a string
value. This return value can now be used as the argument to
int.Parse, and the computer starts executing int.Parse with
the user-provided string as input. When the Parse method returns
an int value, this value becomes the value of the entire expression
int.Parse(Console.ReadLine()), and the computer assigns it
to the variable curYear.

• Notice that by placing the call to ReadLine inside the argument to
Parse, we have eliminated the variable userInput entirely. The
string returned by ReadLine does not need to be stored any-
where (i.e. in a variable); it only needs to exist long enough to be
sent to the Parse method as input.

Correct input formatting

• The Parse methods assume that the string they are given as an ar-
gument (i.e. the user input) actually contains a valid number. But
the user may not follow directions, and invalid input can cause a
variety of errors.

107

• If the string does not contain a number at all – e.g. int badIdea
= int.Parse("Hello"); – the program will fail with the error Sys-
tem.FormatException

• If the string contains a number with a decimal point, but the Parse
method is for an integer datatype, the program will also fail with
System.FormatException. For example, int fromFraction =
int.Parse("52.5"); will cause this error. This will happen even if
the number in the string ends in “.0” (meaning it has no fractional
part), such as int wholeNumber = int.Parse("45.0");.

• If the string has extraneous text before or after the number,
such as "$18.95" or 1999!, the program will fail with the error
System.FormatException

• If the string contains a number that cannot fit in the desired
datatype (due to overflow or underflow), the behavior depends
on the datatype:

– For the integer types (int and long), the program will fail
with the error System.OverflowException. For example,
int.Parse("3000000000") will cause this error because
3000000000 is larger than 231 − 1 (the maximum value an int
can store).

– For the floating-point types (float and double), no error
will be produced. Instead, the result will be the same as
if an overflow or underflow had occurred during normal
program execution: an overflow will produce the value
Infinity, and an underflow will produce the value 0. For
example, float tooSmall = float.Parse("1.5e-55");
will assign tooSmall the value 0, while double tooBig =
double.Parse("1.8e310"); will assign tooBig the value
double.Infinity.

• Acceptable string formats vary slightly between the numeric types,
due to the different ranges of values they can contain

– int.Parse and long.Parse will accept strings in the format
([ws])([sign])[digits]([ws]), where [ws] represents
empty spaces and groups in parentheses are optional. This
means that a string with leading or trailing spaces will not
cause an error, unlike a string with other extraneous text
around the number.

– decimal.Parsewill accept strings in the format ([ws])([sign])([digits],)[digits](.[digits])([ws]).
Note that you can optionally include commas between
groups of digits, and the decimal point is also optional. This
means a string like "18,999" is valid for decimal.Parse but
not for int.Parse.

– float.Parse and double.Parse will accept strings in the for-
mat ([ws])([sign])([digits],)[digits](.[digits])(e[sign][digits])([ws]).
As with decimal, you can include commas between groups
of digits. In addition, you can write the string in scientific

108

notation with the letter “e” or “E” followed by an exponent,
such as "-9.44e15".

Output with Variables
Converting from numbers to strings

• As we saw in a previous lecture (Datatypes and Variables), the Con-
sole.WriteLine method needs a string as its argument

• If the variable you want to display is not a string, you might think
you could cast it to a string, but that will not work – there is no
explicit conversion from string to numeric types

– This code:

double fraction = (double) 47 / 6;
string text = (string) fraction;

will produce a compile error

• You can convert numeric data to a string using string interpola-
tion, which we’ve used before in Console.WriteLine statements:

int x = 47, y = 6;
double fraction = (double) x / y;
string text = $"{x} divided by {y} is {fraction}";

After executing this code, text will contain “47 divided by 6 is
7.8333333”

• String interpolation can convert any expression to a string, not just
a single variable. For example, you can write:

Console.WriteLine($"{x} divided by {y} is {(double) x / y}");
Console.WriteLine($"{x} plus 7 is {x + 7}");

This will display the following output:

47 divided by 6 is 7.8333333
47 plus 7 is 54

Note that writing a math expression inside a string interpolation
statement does not change the values of any variables. After
executing this code, x is still 47, and y is still 6.

The ToString()method

• String interpolation does not “magically know” how to convert num-
bers to strings – it delegates the task to the numbers themselves

109

• This works because all data types in C# are objects, even the built-in
ones like int and double

– Since they are objects, they can have methods

• All objects in C# are guaranteed to have a method named
ToString(), whose return value (result) is a string

• Meaning of ToString()method: “Convert this object to a string,
and return that string”

• This means you can call the ToString() method on any variable
to convert it to a string, like this:

int num = 42;
double fraction = 33.5;
string intText = num.ToString();
string fracText = fraction.ToString();

After executing this code, intText will contain the string “42”, and
fracText will contain the string “33.5”

• String interpolation calls ToString() on each variable or expres-
sion within braces, asking it to convert itself to a string

– In other words, these three statements are all the same:

Console.WriteLine($"num is {num}");
Console.WriteLine($"num is {intText}");
Console.WriteLine($"num is {num.ToString()}");

Putting num within the braces is the same as calling
ToString() on it.

String Concatenation
• Now that we’ve seen ToString(), we can introduce another op-

erator: the concatenation operator
• Concatenation basics

– Remember, the + operator is defined separately for each data
type. The “double + double” operator is different from the
“int + int” operator.

– If the operand types are string (i.e. string + string), the
+ operator performs concatenation, not addition

– You can concatenate string literals or string variables:
string greeting = "Hi there, " + "John";
string name = "Paul";
string greeting2 = "Hi there, " + name;
After executing this code, greeting will contain “Hi there,
John” and greeting2 will contain “Hi there, Paul”

110

• Concatenation with mixed types
– Just like with the other operators, both operands (both sides of

the +) must be the same type
– If one operand is a string and the other is not a string, the
ToString() method will automatically be called to convert it
to a string

– Example: In this code:
int bananas = 42;
string text = "Bananas: " + bananas;
The + operator has a string operand and an int operand,
so the int will be converted to a string. This means the
computer will call bananas.ToString(), which returns the
string “42”. Then the string + string operator is called
with the operands “Bananas:” and “42”, which concatenates
them into “Bananas: 42”.

Output with concatenation

• We now have two different ways to construct a string for Con-
sole.WriteLine: Interpolation and concatenation

• Concatenating a string with a variable will automatically call its
ToString() method, just like interpolation will. These two Write-
Line calls are equivalent:

int num = 42;
Console.WriteLine($"num is {num}");
Console.WriteLine("num is " + num);

• It’s usually easier to use interpolation, since when you have many
variables the + signs start to add up. Compare the length of these
two equivalent lines of code:

Console.WriteLine($"The variables are {a}, {b}, {c}, {d}, and {e}");
Console.WriteLine("The variables are " + a + ", " + b + ", " + c + ", " + d + ", and " + e);

• Be careful when using concatenation with numeric variables: the
meaning of + depends on the types of its two operands

– If both operands are numbers, the + operator does addition

– If both operands are strings, the + operator does concatena-
tion

– If one argument is a string, the other argument will be con-
verted to a string using ToString()

– Expressions in C# are always evaluated left-to-right, just like
arithmetic

111

– Therefore, in this code:

int var1 = 6, var2 = 7;
Console.WriteLine(var1 + var2 + " is the result");
Console.WriteLine("The result is " + var1 + var2);

The first WriteLine will display “13 is the result”, because var1
and var2 are both ints, so the first + operator performs addi-
tion on two ints (the resulting number,13, is then converted to
a string for the second + operator). However, the second
WriteLine will display “The result is 67”, because both + op-
erators perform concatenation: The first one concatenates a
string with var1 to produce a string, and then the second one
concatenates this string with var2

– If you want to combine addition and concatenation in the
same line of code, use parentheses to make the order and
grouping of operations explicit. For example:

int var1 = 6, var2 = 7;
Console.WriteLine((var1 + var2) + " is the result");
Console.WriteLine("The result is " + (var1 + var2));

In this code, the parentheses ensure that var1 + var2 is always
interpreted as addition.

Introduction

Class and Object Basics
• Classes vs. Objects

– A class is a specification, blueprint, or template for an object;
it is the code that describes what data the object stores and
what it can do

– An object is a single instance of a class, created using its “tem-
plate.” It is executing code, with specific values stored in each
variable

– To instantiate an object is to create a new object from a class
• Object design basics

– Objects have attributes: data stored in the object. This data is
different in each instance, although the type of data is defined
in the class.

– Objects have methods: functions that use or modify the ob-
ject’s data. The code for these functions is defined in the class,
but it is executed on (and modifies) a specific object

• Encapsulation: An important principle in class/object design

112

– Attribute data is stored in instance variables, a special kind of
variable

– Called “instance” because each instance, i.e. object, has its
own copy of them

– Encapsulation means instance variables (attributes) are “hid-
den” inside an object: other code cannot access them di-
rectly
∗ Only the object’s own methods can access the instance

variables
∗ Other code must “ask permission” from the object in order

to read or write the variables

Writing Our First Class
• Designing the class

– Our first class will be used to represent rectangles; each
instance (object) will represent one rectangle

– Attributes of a rectangle:
∗ Length
∗ Width

– Methods that will use the rectangle’s attributes
∗ Get length
∗ Get width
∗ Set length
∗ Set width
∗ Compute the rectangle’s area

– Note that the first four are a specific type of method called
“getters” and “setters” because they allow other code to read
(get) or write (set) the rectangle’s instance variables while re-
specting encapsulation

The Rectangle class:

!include code/snippets/rectangle.cs

Let’s look at each part of this code in order.

• Attributes
– Each attribute (length and width) is stored in an instance vari-

able
– Instance variables are declared similarly to “regular” variables,

but with one additional feature: the access modifier
– Syntax: [access modifier] [type] [variable name]
– The access modifier can have several values, the most com-

mon of which are public and private. (There are other ac-
cess modifiers, such as protected and internal, but in this
class we will only be using public and private).

113

– An access modifier of private is what enforces encapsulation:
when you use this access modifier, it means the instance vari-
able cannot be accessed by any code outside the Rectangle
class

– The C# compiler will give you an error if you write code that
attempts to use a private instance variable anywhere other
than a method of that variable’s class

• SetLength method, an example of a “setter” method
– This method will allow code outside the Rectangle class to

modify a Rectangle object’s “length” attribute
– Note that the header of this method has an access modifier,

just like the instance variable
– In this case the access modifier is public because we want to

allow other code to call the SetLength method
– Syntax of a method declaration: [access modifier] [re-
turn type] [method name]([parameters])

– This method has one parameter, named lengthParameter,
whose type is int. This means the method must be called with
one argument that is int type.
∗ Similar to how Console.WriteLine must be called

with one argument that is string type – the Con-
sole.WriteLine declaration has one parameter that is
string type.

∗ Note that it is declared just like a variable, with a type and
a name

– A parameter works like a variable: it has a type and a value,
and you can use it in expressions and assignment

– When you call a method with a particular argument, like 15, the
parameter is assigned this value, so within the method’s code
you can assume the parameter value is “the argument to this
method”

– The body of the SetLength method has one statement, which
assigns the instance variable length to the value contained
in the parameter lengthParameter. In other words, whatever
argument SetLength is called with will get assigned to length

– This is why it is called a “setter”: SetLength(15) will set length
to 15.

• GetLength method, an example of a “getter” method
– This method will allow code outside the Rectangle class to

read the current value of a Rectangle object’s “length” at-
tribute

– The return type of this method is int, which means that the
value it returns to the calling code is an int value

– Recall that Console.ReadLine() returns a string value to
the caller, which is why you can write string userInput =
Console.ReadLine(). The GetLength method will do the

114

same thing, only with an int instead of a string
– This method has no parameters, so you do not provide any ar-

guments when calling it. “Getter” methods never have param-
eters, since their purpose is to “get” (read) a value, not change
anything

– The body of GetLength has one statement, which uses a new
keyword: return. This keyword declares what will be returned
by the method, i.e. what particular value will be given to the
caller to use in an expression.

– In a “getter” method, the value we return is the instance vari-
able that corresponds to the attribute named in the method.
GetLength returns the length instance variable.

• SetWidth method
– This is another “setter” method, so it looks very similar to
SetLength

– It takes one parameter (widthParameter) and assigns it to the
width instance variable

– Note that the return type of both setters is void. The return
type void means “this method does not return a value.” Con-
sole.WriteLine is an example of a void method we’ve used
already.

– Since the return type is void, there is no return statement in
this method

• GetWidth method
– This is the “getter” method for the width attribute
– It looks very similar to GetLength, except the instance variable

in the return statement is width rather than length
• The ComputeArea method

– This is not a getter or setter: its goal is not to read or write a
single instance variable

– The goal of this method is to compute and return the rectan-
gle’s area

– Since the area of the rectangle will be an int (it is the product
of two ints), we declare the return type of the method to be
int

– This method has no parameters, because it does not need any
arguments. Its only “input” is the instance variables, and it will
always do the same thing every time you call it.

– The body of the method has a return statement with an ex-
pression, rather than a single variable

– When you write return [expression], the expression will be
evaluated first, then the resulting value will be used by the re-
turn command

– In this case, the expression length * width will be evaluated,
which computes the area of the rectangle. Since both length
and widthare ints, the int version of the *operator executes,

115

and it produces an int result. This resulting int is what the
method returns.

Using Our Class
• We’ve written a class, but it does not do anything yet

– The class is a blueprint for an object, not an object
– To make it “do something” (i.e. execute some methods), we

need to instantiate an object using this class
– The code that does this should be in a separate file (e.g. Pro-

gram.cs), not in Rectangle.cs
• Here is a program that uses our Rectangle class:

!include code/snippets/rectangleMain.cs

• Instantiating an object
– The first line of code creates a Rectangle object
– The left side of the = sign is a variable declaration – it declares

a variable of type Rectangle
∗ Classes we write become new data types in C#

– The right side of the = sign assigns this variable a value: a Rect-
angle object

– We instantiate an object by writing the keyword new followed
by the name of the class (syntax: new [class name]()). The
empty parentheses are required, but we will explain why later.

– This statement is really an initialization statement: It declares
and assigns a variable in one line

– The value of the myRectangle variable is the Rectangle ob-
ject that was created by new Rectangle()

• Calling setters on the object
– The next two lines of code call the SetLength and SetWidth

methods on the object
– Syntax: [object name].[method name]([argument]).

Note the “dot operator” between the variable name and the
method name.

– SetLength is called with an argument of 12, so lengthParam-
eter gets the value 12, and the rectangle’s length instance
variable is then assigned this value

– Similarly, SetWidth is called with an argument of 3, so the rect-
angle’s width instance variable is assigned the value 3

• Calling ComputeArea
– The next line calls the ComputeArea method and assigns its re-

sult to a new variable named area
– The syntax is the same as the other method calls
– Since this method has a return value, we need to do something

with the return value – we assign it to a variable

116

– Similar to how you must do something with the result (return
value) of Console.ReadLine(), i.e. string userInput =
Console.ReadLine()

• Calling getters on the object
– The last line of code displays some information about the rect-

angle object using string interpolation
– One part of the string interpolation is the area variable, which

we’ve seen before
– The other interpolated values are myRectangle.GetLength()

and myRectangle.GetWidth()
– Looking at the first one: this will call the GetLength method,

which has a return value that is an int. Instead of storing the
return value in an int variable, we put it in the string interpola-
tion brackets, which means it will be converted to a string using
ToString. This means the rectangle’s length will be inserted
into the string and displayed on the screen

Flow of Control with Objects
• Consider what happens when you have multiple objects in the

same program, like this:

!include code/snippets/multipleRectangles.cs

– First, we declare a variable of type Rectangle
– Then we assign rect1 a value, a new Rectangle object that

we instantiate
– We call the SetLength and SetWidth methods using rect1,

and the Rectangle object that rect1 refers to gets its length
and width instance variables set to 12 and 3

– Then we create another Rectangle object and assign it to the
variable rect2 . This object has its own copy of the length
and width instance variables, not 12 and 3

– We call the SetLength and SetWidth methods again, using
rect2 on the left side of the dot instead of rect1. This means
the Rectangle object that rect2 refers to gets its instance vari-
ables set to 7 and 15, while the other Rectangle remains un-
modified

• The same method code can modify different objects at different
times

– Calling a method transfers control from the current line of code
(i.e. in Program.cs) to the method code within the class (Rect-
angle.cs)

– The method code is always the same, but the specific object
that gets modified can be different each time

117

– The variable on the left side of the dot operator determines
which object gets modified

– In rect1.SetLength(12), rect1 is the calling object, so
SetLength will modify rect1
∗ SetLength begins executing with lengthParameter

equal to 12
∗ The instance variable length in length = lengthParam-

eter refers to rect1’s length
– In rect2.SetLength(7), rect2 is the calling object, so
SetLength will modify rect2
∗ SetLength begins executing with lengthParameter

equal to 7
∗ The instance variable length in length = lengthParam-

eter refers to rect2’s length

Accessing object members

• The “dot operator” that we use to call methods is technically the
member access operator

• A member of an object is either a method or an instance variable

• When we write objectName.methodName(), e.g. rect1.SetLength(12),
we are using the dot operator to access the “SetLength” member
of rect1, which is a method; this means we want to call (execute)
the SetLength method of rect1

• We can also use the dot operator to access instance variables, al-
though we usually do not do that because of encapsulation

• If we wrote the Rectangle class like this:

class Rectangle
{

public int length;
public int width;

}

Then we could write a Main method that uses the dot operator to
access the length and width instance variables, like this:

static void Main(string[] args)
{

Rectangle rect1 = new Rectangle();
rect1.length = 12;
rect1.width = 3;

}

But this code violates encapsulation, so we will not do this.

118

Method calls in more detail

• Now that we know about the member access operator, we can
explain how method calls work a little better

• When we write rect1.SetLength(12), the SetLength method
is executed with rect1 as the calling object – we are accessing
the SetLength member of rect1 in particular (even though every
Rectangle has the same SetLength method)

• This means that when the code in SetLength uses an instance vari-
able, i.e. length, it will automatically access rect1’s copy of the
instance variable

• You can imagine that the SetLength method “changes” to this
when you call rect1.SetLength():

public void SetLength(int lengthParameter)
{

rect1.length = lengthParameter;
}

Note that we use the “dot” (member access) operator on rect1 to
access its length instance variable.

• Similarly, you can imagine that the SetLength method “changes”
to this when you call rect2.SetLength():

public void SetLength(int lengthParameter)
{

rect2.length = lengthParameter;
}

• The calling object is automatically “inserted” before any instance
variables in a method

• The keyword this is an explicit reference to “the calling object”

– Instead of imagining that the calling object’s name is inserted
before each instance variable, you could write the SetLength
method like this:

public void SetLength(int lengthParameter)
{

this.length = lengthParameter;
}

– This is valid code (unlike our imaginary examples) and will work
exactly the same as our previous way of writing SetLength

– When SetLength is called with rect1.SetLength(12), this
becomes equal to rect1, just like lengthParameterbecomes
equal to 12

119

– When SetLength is called with rect2.SetLength(7), this
becomes equal to rect2 and lengthParameter becomes
equal to 7

Methods and instance variables

• Using a variable in an expression means reading its value

• A variable only changes when it is on the left side of an assignment
statement; this is writing to the variable

• A method that uses instance variables in an expression, but does
not assign to them, will not modify the object

• For example, consider the ComputeArea method:

public int ComputeArea()
{

return length * width;
}

It reads the current values of length and width to compute their
product, but the product is returned to the method’s caller. The
instance variables are not changed.

• After executing the following code:

Rectangle rect1 = new Rectangle();
rect1.SetLength(12);
rect1.SetWidth(3);
int area = rect1.ComputeArea();

rect1 has a length of 12 and a width of 3. The call to
rect1.ComputeArea() computes 12 ⋅ 3 = 36, and the area
variable is assigned this return value, but it does not change rect1.

Methods and return values

• Recall the basic structure of a program: receive input, compute
something, produce output

• A method has the same structure: it receives input from its param-
eters, computes by executing the statements in its body, then pro-
duces output by returning a value

– For example, consider this method defined in the Rectangle
class:

public int LengthProduct(int factor)
{

return length * factor;

120

}

Its input is the parameter factor, which is an int. In the
method body, it computes the product of the rectangle’s
length and factor. The method’s output is the resulting
product.

• The return statement specifies the output of the method: a vari-
able, expression, etc. that produces some value

• A method call can be used in other code as if it were a value. The
“value” of a method call is the method’s return value.

– In previous examples, we wrote int area = rect1.ComputeArea();,
which assigns a variable (area) a value (the return value of
ComputeArea())

– The LengthProduct method can be used like this:

Rectangle rect1 = new Rectangle();
rect1.SetLength(12);
int result = rect1.LengthProduct(2) + 1;

When executing the third line of code, the computer first ex-
ecutes the LengthProduct method with argument (input) 2,
which computes the product 12 ⋅ 2 = 24. Then it uses the
return value of LengthProduct, which is 24, to evaluate the
expression rect1.LengthProduct(2) + 1, producing a result
of 25. Finally, it assigns the value 25 to the variable result.

• When writing a method that returns a value, the value in the return
statement must be the same type as the method’s return type

– If the value returned by LengthProduct is not an int, we will
get a compile error

– This will not work:

public int LengthProduct(double factor)
{

return length * factor;
}

Now that factor has type double, the expression length *
factor will need to implicitly convert length from int to dou-
ble in order to make the types match. Then the product will
also be a double, so the return value does not match the re-
turn type (int).

– We could fix it by either changing the return type of the method
to double, or adding a cast to int to the product so that the
return value is still an int

121

• Not all methods return a value, but all methods must have a return
type

– The return type void means “nothing is returned”

– If your method does not return a value, its return type must be
void. If the return type is not void, the method must return a
value.

– This will cause a compile error because the method has a return
type of int but no return statement:

public int SetLength(int lengthP)
{

length = lengthP;
}

– This will cause a compile error because the method has a return
type of void, but it attempts to return something anyway:

public void GetLength()
{

return length;
}

Introduction to UML
• UML is a specification language for software

– UML: Unified Modeling Language
– Describes design and structure of a program with graphics
– Does not include “implementation details,” such as code state-

ments
– Can be used for any programming language, not just C#
– Used in planning/design phase of software creation, before

you start writing code
– Process: Determine program requirements → Make UML dia-

grams → Write code based on UML → Test and debug pro-
gram

• UML Class Diagram elements

!include uml/ClassName.md

– Top box: Class name, centered
– Middle box: Attributes (i.e. instance variables)

∗ On each line, one attribute, with its name and type
∗ Syntax: [+/-] [name]: [type]
∗ Note this is the opposite order from C# variable declaration:

type comes after name

122

∗ Minus sign at beginning of line indicates “private member”
– Bottom box: Operations (i.e. methods)

∗ On each line, one method header, including name, pa-
rameters, and return type

∗ Syntax: [+/-] [name]([parameter name]: [parameter
type]): [return type]

∗ Also backwards compared to C# order: parameter types
come after parameter names, and return type comes after
method name instead of before it

∗ Plus sign at beginning of line indicates “public”, which is
what we want for methods

• UML Diagram for the Rectangle class

!include uml/Rectangle.md

– Note that when the return type of a method is void, we can
omit it in UML

– In general, attributes will be private (- sign) and methods will
be public (+ sign), so you can expect most of your classes to
follow this pattern (-s in the upper box, +s in the lower box)

– Note that there is no code or “implementation” described
here: it does not say that ComputeArea will multiply length by
width

• Writing code based on a UML diagram

– Each diagram is one class, everything within the box is
between the class’s header and its closing brace

– For each attribute in the attributes section, write an instance
variable of the right name and type
∗ See “- width: int”, write private int width;
∗ Remember to reverse the order of name and type

– For each method in the methods section, write a method
header with the matching return type, name, and parameters
∗ Parameter declarations are like the instance variables: in

UML they have a name followed by a type, in C# you write
the type name first

– Now the method bodies need to be filled in - UML just defined
the interface, now you need to write the implementation

Variable Scope
Instance variables vs. local variables

• Instance variables: Stored (in memory) with the object, shared by
all methods of the object. Changes made within a method persist
after method finishes executing.

123

• Local variables: Visible to only one method, not shared. Disappear
after method finishes executing. Variables we’ve created before in
the Main method (they are local to the Main method!).

• Example: In class Rectangle, we have these two methods:

public void SwapDimensions()
{

int temp = length;
length = width;
width = temp;

}
public int GetLength()
{

return length;
}

– temp is a local variable within SwapDimensions, while length
and width are instance variables

– The GetLength method cannot use temp; it is visible only to
SwapDimensions

– When SwapDimensions changes length, that change is per-
sistent – it will still be different when GetLength executes, and
the next call to GetLength after SwapDimensions will return
the new length

– When SwapDimensions assigns a value to temp, it only has
that value within the current call to SwapDimensions – after
SwapDimensions finishes, temp disappears, and the next call
to SwapDimensions creates a new temp

Definition of scope

• Variables exist only in limited time and space within the program

• Outside those limits, the variable cannot be accessed – e.g. local
variables cannot be accessed outside their method

• Scope of a variable: The region of the program where it is accessi-
ble/visible

– A variable is “in scope” when it is accessible
– A variable is “out of scope” when it does not exist or cannot be

accessed

• Time limits to scope: Scope begins after the variable has been de-
clared

– This is why you cannot use a variable before declaring it

124

• Space limits to scope: Scope is within the same code block where
the variable is declared

– Code blocks are defined by curly braces: everything between
matching { and } is in the same code block

– Instance variables are declared in the class’s code block (they
are inside class Rectangle’s body, but not inside anything
else), so their scope extends to the entire class

– Code blocks nest: A method’s code block is inside the class’s
code block, so instance variables are also in scope within each
method’s code block

– Local variables are declared inside a method’s code block, so
their scope is limited to that single method

• The scope of a parameter (which is a variable) is the method’s code
block - it is the same as a local variable for that method

• Scope example:

public void SwapDimensions()
{

int temp = length;
length = width;
width = temp;

}
public void SetWidth(int widthParam)
{

int temp = width;
width = widthParam;

}

– The two variables named temp have different scopes: One has
a scope limited to the SwapDimensions method’s body, while
the other has a scope limited to the SetWidth method’s body

– This is why they can have the same name: variable names must
be unique within the variable’s scope. You can have two vari-
ables with the same name if they are in different scopes.

– The scope of instance variables length and width is the body
of class Rectangle, so they are in scope for both of these meth-
ods

Variables with overlapping scopes

• This code is legal (compiles) but does not do what you want:

class Rectangle
{

private int length;
private int width;

125

public void UpdateWidth(int newWidth)
{

int width = 5;
width = newWidth;

}
}

• The instance variable width and the local variable width have dif-
ferent scopes, so they can have the same name

• But the instance variable’s scope (the class Rectangle) overlaps
with the local variable’s scope (the method UpdateWidth)

• If two variables have the same name and overlapping scopes, the
variable with the closer or smaller scope shadows the variable with
the farther or wider scope: the name will refer only to the variable
with the smaller scope

• In this case, that means width inside UpdateWidth refers only to
the local variable named width, whose scope is smaller because it
is limited to the UpdateWidth method. The line width = newWidth
actually changes the local variable, not the instance variable
named width.

• Since instance variables have a large scope (the whole class), they
will always get shadowed by variables declared within methods

• You can prevent shadowing by using the keyword this, like this:

class Rectangle
{

private int length;
private int width;
public void UpdateWidth(int newWidth)
{

int width = 5;
this.width = newWidth;

}
}

Since this means “the calling object”, this.width means “ac-
cess the width member of the calling object.” This can only mean
the instance variable width, not the local variable with the same
name

• Incidentally, you can also use this to give your parameters the
same name as the instance variables they are modifying:

class Rectangle
{

private int length;

126

private int width;
public void SetWidth(int width)
{

this.width = width;
}

}

Without this, the body of the SetWidthmethod would be width =
width;, which does not do anything (it would assign the parameter
width to itself).

Constants
• Classes can also contain constants

• Syntax: [public/private] const [type] [name] = [value];

• This is a named value that never changes during program execu-
tion

• Safe to make it public because it cannot change – no risk of vio-
lating encapsulation

• Can only be built-in types (int, double, etc.), not objects

• Can make your program more readable by giving names to “magic
numbers” that have some significance

• Convention: constants have names in ALL CAPS

• Example:

class Calendar
{

public const int MONTHS = 12;
private int currentMonth;
//...

}

The value “12” has a special meaning here, i.e. the number of
months in a year, so we use a constant to name it.

• Constants are accessed using the name of the class, not the name
of an object – they are the same for every object of that class. For
example:

Calendar myCal = new Calendar();
decimal yearlyPrice = 2000.0m;
decimal monthlyPrice = yearlyPrice / Calendar.MONTHS;

127

Reference Types: More Details
• Data types in C# are either value types or reference types

– This difference was introduced in an earlier lecture (Datatypes
and Variables)

– For a value type variable (int, long, float, double, decimal,
char, bool) the named memory location stores the exact data
value held by the variable

– For a reference type variable, such as string, the named
memory location stores a reference to the value, not the value
itself

– All objects you create from your own classes, like Rectangle,
are reference types

• Object variables are references
– When you have a variable for a reference type, or “reference

variable,” you need to be careful with the assignment opera-
tion

– Consider this code:
!include code/snippets/referenceAssignment.cs

– The output is:
Rectangle 1: 4 by 10
Rectangle 2: 4 by 10

– The variables rect1 and rect2 actually refer to the same
Rectangle object, so rect2.SetLength(4) seems to change
the length of “both” rectangles

– The assignment operator copies the contents of the variable,
but a reference variable contains a reference to an object – so
that’s what gets copied (in Rectangle rect2 = rect1), not
the object itself

– In more detail:
∗ Rectangle rect1 = new Rectangle() creates a new

Rectangle object somewhere in memory, then creates a
reference variable named rect1 somewhere else in mem-
ory. The variable named rect1 is initialized with the mem-
ory address of the Rectangle object, i.e. a reference to the
object

∗ rect1.SetLength(8) reads the address of the Rectangle
object from the rect1 variable, finds the object in mem-
ory, and executes the SetLength method on that object
(changing its length to 8)

∗ rect1.SetWidth(10)does the same thing, finds the same
object, and sets its width to 10

∗ Rectangle rect2 = rect1 creates a reference variable
named rect2 in memory, but does not create a new Rect-
angle object. Instead, it initializes rect2 with the same
memory address that is stored in rect1, referring to the

128

same Rectangle object
∗ rect2.SetLength(4) reads the address of a Rectangle

object from the rect2 variable, finds that object in mem-
ory, and sets its length to 4 – but this is the exact same Rect-
angle object that rect1 refers to

• Reference types can also appear in method parameters
– When you call a method, you provide an argument (a value)

for each parameter in the method’s declaration
– Since the parameter is really a variable, the computer will then

assign the argument to the parameter, just like variable assign-
ment
∗ For example, when you write rect1.SetLength(8), there

is an implicit assignment lengthParameter = 8 that gets
executed before executing the body of the SetLength
method

– This means if the parameter is a reference type (like an object),
the parameter will get a copy of the reference, not a copy of
the object

– When you use the parameter to modify the object, you will
modify the same object that the caller provided as an argu-
ment

– This means objects can change other objects!
– For example, imagine we added this method to the Rectangle

class:
public void CopyToOther(Rectangle otherRect)
{

otherRect.SetLength(length);
otherRect.SetWidth(width);

}
It uses the SetLength and SetWidth methods to modify its
parameter, otherRect. Specifically, it sets the parameter’s
length and width to its own length and width.

– The Main method of a program could do something like this:
Rectangle rect1 = new Rectangle();
Rectangle rect2 = new Rectangle();
rect1.SetLength(8);
rect1.SetWidth(10);
rect1.CopyToOther(rect2);
Console.WriteLine($"Rectangle 2: {rect2.GetLength()} "

+ $"by {rect2.GetWidth()}");
∗ First it creates two different Rectangle objects (note the

two calls to new), then it sets the length and width of one
object, using rect1.SetLength and rect1.SetWidth

∗ Then it calls the CopyToOthermethod with an argument of
rect2. This transfers control to the method and (implicitly)
makes the assignment otherRect = rect2

129

∗ Since otherRect and rect2 are now reference vari-
ables referring to the same object, the calls to other-
Rect.SetLength and otherRect.SetWidth within the
method will modify that object

∗ After the call to CopyToOther, the object referred to by
rect2 has a length of 8 and a width of 10, even though
we never called rect2.SetLength or rect2.SetWidth

More Advanced Object Concepts

Default Values and the ClassRoom Class
• In lab, you were asked to execute a program like this:

!include code/snippets/rectangleInitialValues.cs

Note that we create a Rectangle object, but do not use the
SetLength or SetWidth methods to assign values to its instance
variables. It displays the following output:

Length is 0
Width is 0

• This works because the instance variables length and width have
a default value of 0, even if you never assign them a value

• Local variables, like the ones we write in the Main method, do not
have default values. You must assign them a value before using
them in an expression.

– For example, this code will produce a compile error:

int myVar1;
int myVar2 = myVar1 + 5;

You cannot assume myVar1 will be 0; it has no value at all until
you use an assignment statement.

• When you create (instantiate) a new object, its instance variables
will be assigned specific default values based on their type:

Type Default Value

Numeric types 0
string null
objects null
bool false
char '\0'

130

• Remember, null is the value of a reference-type variable that
refers to “nothing” - it does not contain the location of any object at
all. You cannot do anything with a reference variable containing
null.

A class we will use for subsequent examples

• ClassRoom: Represents a room in a building on campus

• UML Diagram:

!include uml/ClassRoom.md

– There are two attributes: the name of the building (a string)
and the room number (an int)

– Each attribute will have a “getter” and “setter” method

• Implementation:

!include code/snippets/classroom.cs

– Each attribute is implemented by an instance variable with the
same name

– To write the “setter” for the building attribute, we write a
method whose return type is void, with a single string-type
parameter. Its body assigns the building instance variable
to the value in the parameter buildingParam

– To write the “getter” for the building attribute, we write a
method whose return type is string, and whose body returns
the instance variable building

• Creating an object and using its default values:

!include code/snippets/classroomInitialValues.cs

This will print the following output:

Building is
Room number is 0

Remember that the default value of a string variable is null.
When you use string interpolation on null, you get an empty string.

Constructors
• Instantiation syntax requires you to write parentheses after the

name of the class, like this:

ClassRoom english = new ClassRoom();

• Parentheses indicate a method call, like in Console.ReadLine()
or english.GetBuilding()

131

• In fact, the instantiation statement new ClassRoom() does call a
method: the constructor

• Constructor: A special method used to create an object. It “sets
up” a new instance by initializing its instance variables.

• If you do not write a constructor in your class, C# will generate a
“default” constructor for you – this is what’s getting called when we
write new ClassRoom() here

• The default constructor initializes each instance variable to its de-
fault value – that’s where default values come from

Writing a constructor

• Example for ClassRoom:

public ClassRoom(string buildingParam, int numberParam)
{

building = buildingParam;
number = numberParam;

}

• To write a constructor, write a method whose name is exactly the
same as the class name

• This method has no return type, not even void. It does not have a
return statement either

• For ClassRoom, this means the constructor’s header starts with pub-
lic ClassRoom

– You can think of this method as “combining” the return type
and name. The name of the method is ClassRoom, and its out-
put is of type ClassRoom, since the return value of new Class-
Room() is always a ClassRoom object

– You do not actually write a return statement, though, be-
cause new will always return the new object after calling the
constructor

• A custom constructor usually has parameters that correspond to
the instance variables: for ClassRoom, it has a string parameter
named buildingParam, and an int parameter named number-
Param

– Note that when we write a method with two parameters, we
separate the parameters with a comma

• The body of a constructor must assign values to all instance vari-
ables in the object

132

• Usually this means assigning each parameter to its corresponding
instance variable: initialize the instance variable to equal the pa-
rameter

– Very similar to calling both “setters” at once

• Using a constructor

• An instantiation statement will call a constructor for the class being
instantiated

• Arguments in parentheses must match the parameters of the con-
structor

• Example with the ClassRoom constructor:

!include code/snippets/classroomUsingConstructor.cs

This program will produce this output:

Building is Allgood East
Room number is 356

• The instantiation statement new ClassRoom("Allgood East",
356) first creates a new “empty” object of type ClassRoom, then
calls the constructor to initialize it. The first argument, “Allgood
East”, becomes the constructor’s first parameter (buildingParam),
and the second argument, 356, becomes the constructor’s second
parameter (numberParam).

• After executing the instantiation statement, the object referred to
by csci has its instance variables set to these values, even though
we never called SetBuilding or SetNumber

Methods with multiple parameters

• The constructor we wrote is an example of a method with two pa-
rameters

• The same syntax can be used for ordinary, non-constructor meth-
ods, if we need more than one input value

• For example, we could write this method in the Rectangle class:

public void MultiplyBoth(int lengthFactor, int widthFactor)
{

length *= lengthFactor;
width *= widthFactor;

}

• The first parameter has type int and is named lengthFactor. The
second parameter has type int and is named widthFactor

133

• You can call this method by providing two arguments, separated
by a comma:

Rectangle myRect = new Rectangle();
myRect.SetLength(5);
myRect.SetWidth(10);
myRect.MultiplyBoth(3, 5);

The first argument, 3, will be assigned to the first parameter,
lengthFactor. The second argument, 5, will be assigned to the
second parameter, widthFactor

• The order of the arguments matters when calling a multi-parameter
method. If you write myRect.MultiplyBoth(5, 3), then length-
Factor will be 5 and widthFactor will be 3.

• The type of each argument must match the type of the correspond-
ing parameter. For example, when you call the ClassRoom con-
structor we just wrote, the first argument must be a string and the
second argument must be an int

Writing multiple constructors

• Remember that if you do not write a constructor, C# generates a
“default” one with no parameters, so you can write new Class-
Room()

• Once you add a constructor to your class, C# will not generate a
default constructor

– This means once we write the ClassRoom constructor (as
shown earlier), this statement will produce a compile error:
ClassRoom english = new ClassRoom();

– The constructor we wrote has 2 parameters, so now you always
need 2 arguments to instantiate a ClassRoom

• If you still want the option to create an object with no arguments
(i.e. new ClassRoom()), you must write a constructor with no pa-
rameters

• A class can have more than one constructor, so it would look like
this:

class ClassRoom
{

//...
public ClassRoom(string buildingParam, int numberParam)
{

building = buildingParam;
number = numberParam;

134

}
public ClassRoom()
{

building = null;
number = 0;

}
//...

}

• The “no-argument” constructor must still initialize all the instance
variables, even though it has no parameters

– You can pick any “default value” you want, or use the same
ones that C# would use (0 for numeric variables, null for ob-
ject variables, etc.)

• When a class has multiple constructors, the instantiation statement
must decide which constructor to call

• The instantiation statement will call the constructor whose parame-
ters match the arguments you provide

– For example, each of these statements will call a different con-
structor:

ClassRoom csci = new ClassRoom("Allgood East", 356);
ClassRoom english = new ClassRoom();

The first statement calls the two-parameter constructor we
wrote, since it has a string argument and an int argument
(in that order), and those match the parameters (string
buildingParam, int numberParam). The second statement
calls the zero-parameter constructor since it has no arguments.

– If the arguments do not match any constructor, it is still an error:

ClassRoom csci = new ClassRoom(356, "Allgood East");

This will produce a compile error, because the instantiation
statement has two arguments in the order int, string, but
the only constructor with two parameters needs the first
parameter to be a string.

Writing ToString Methods
• ToString recap

– String interpolation automatically calls the ToString method
on each variable or value

135

– ToString returns a string “equivalent” to the object; for exam-
ple, if num is an int variable containing 42, num.ToString()
returns “42”.

– C# datatypes already have a ToString method, but you
need to write a ToString method for your own classes to use
them in string interpolation

• Writing a ToString method
– To add a ToString method to your class, you must write this

header: public override string ToString()
– The access modifier must be public (so other code, like string

interpolation, can call it)
– The return type must be string (ToString must output a string)
– It must have no parameters (the string interpolation code will

not know what arguments to supply)
– The keyword override means your class is “overriding,” or pro-

viding its own version of, a method that is already defined else-
where – ToString is defined by the base object type, which
is why string interpolation “knows” it can call ToString on any
object
∗ If you do not use the keyword override, then the pre-

existing ToString method (defined by the base object
type) will be used instead, which only returns the name of
the class

– The goal of ToString is to return a “string representation” of
the object, so the body of the method should use all of the
object’s attributes and combine them into a string somehow

– Example ToString method for ClassRoom:
public override string ToString()
{

return building + " " + number;
}
∗ There are two instance variables, building and number,

and we use both of them
∗ A natural way to write the name of a classroom is the build-

ing name followed by the room number, like “University Hall
124”, so we concatenate the variables in that order

∗ Note that we add a space between the variables
∗ Note that building is already a string, but number is

an int, so string concatenation will implicitly call num-
ber.ToString() – ToString methods can call other
ToString methods

∗ Another way to write the body would be return
$"{building} {number}";

• Using a ToString method
– Any time an object is used in string interpolation or concatena-

tion, its ToString method will be called

136

– You can also call ToString by name using the “dot operator,”
like any other method

– This code will call the ToString method we just wrote for
ClassRoom:
ClassRoom csci = new ClassRoom("Allgood East", 356);
Console.WriteLine(csci);
Console.WriteLine($"The classroom is {csci}");
Console.WriteLine("The classroom is " + csci.ToString());

Method Signatures and Overloading
Name uniqueness in C#

• In general, variables, methods, and classes must have unique
names, but there are several exceptions

• Variables can have the same name if they are in different scopes
– Two methods can each have a local variable with the same

name
– A local variable (scope limited to the method) can have the

same name as an instance variable (scope includes the whole
class), but this will result in shadowing

• Classes can have the same name if they are in different names-
paces

– This is one reason C# has namespaces: you can name your
classes anything you want. Otherwise, if a library (someone
else’s code) used a class name, you would be prevented from
using that name

– For example, imagine you were using a “shapes library” that
provided a class named Rectangle, but you also wanted to
write your own class named Rectangle

– The library’s code would use its own namespace, like this:
namespace ShapesLibrary
{

class Rectangle
{

//instance variables, methods, etc.
}

}
Then your own code could have a Rectangleclass in your own
namespace:
namespace MyProject
{

class Rectangle
{

//instance variables, methods, etc.
}

137

}
– You can use both Rectangle classes in the same code, as long

as you specify the namespace, like this:
MyProject.Rectangle rect1 = new MyProject.Rectangle();
ShapesLibrary.Rectangle rect2 = new ShapesLibrary.Rectangle();

• Methods can have the same name if they have different signatures;
this is called overloading

– We’ll explain signatures in more detail in a minute
– Briefly, methods can have the same name if they have different

parameters
– For example, you can have two methods named Multiply in

the Rectangle class, as long as one has one parameter and
the other has two parameters:
public void Multiply(int factor)
{

length *= factor;
width *= factor;

}
public void Multiply(int lengthFactor, int widthFactor)
{

length *= lengthFactor;
width *= widthFactor;

}
C# understands that these are different methods, even though
they have the same name, because their parameters are dif-
ferent. If you write myRect.Multiply(2) it can only mean the
first “Multiply” method, not the second one, because there is
only one argument.

– We have used overloading already when we wrote multiple
constructors – constructors are methods too. For example,
these two constructors have the same name, but different
parameters:
public ClassRoom(string buildingParam, int numberParam)
{

building = buildingParam;
number = numberParam;

}
public ClassRoom()
{

building = null;
number = 0;

}

Method signatures

• A method’s signature has 3 components: its name, the type of

138

each parameter, and the order the parameters appear in
• Methods are unique if their signatures are unique, which is why they

can have the same name
• Signature examples:

– public void Multiply(int lengthFactor, int width-
Factor) – the signature is Multiply(int, int) (name is Mul-
tiply, parameters are int and int type)

– public void Multiply(int factor) – signature is Multi-
ply(int)

– public void Multiply(double factor) – signature is Mul-
tiply(double)

– These could all be in the same class since they all have different
signatures

• Parameter names are not part of the signature, just their types
– Note that the parameter names are omitted when I write down

the signature
– That means these two methods are not unique and could not

be in the same class:
public void SetWidth(int widthInMeters)
{

//...
}
public void SetWidth(int widthInFeet)
{

//...
}
Both have the same signature, SetWidth(int), even though
the parameters have different names. You might intend the
parameters to be different (i.e. represent feet vs. meters), but
any int-type parameter is the same to C#

• The method’s return type is not part of the signature
– So far all the examples have the same return type (void), but

changing it would not change the signature
– The signature of public int Multiply(int factor)

is Multiply(int), which is the same as public void
Multiply(int factor)

– The signature “begins” with the name of the method; every-
thing “before” that does not count (i.e. public, int)

• The order of parameters is part of the signature, as long as the types
are different

– Since parameter name is not part of the signature, only the
type can determine the order

– These two methods have different signatures:
public int Update(int number, string name)
{

//...

139

}
public int Update(string name, int number)
{

//..
}
The signature of the first method is Update(int, string). The
signature of the second method is Update(string, int).

– These two methods have the same signature, and could not
be in the same class:
public void Multiply(int lengthFactor, int widthFactor)
{

//...
}
public void Multiply(int widthFactor, int lengthFactor)
{

//...
}
The signature for both methods is Multiply(int, int), even
though we switched the order of the parameters – the name
does not count, and they are both int type

• Constructors have signatures too
– The constructor ClassRoom(string buildingParam, int
numberParam) has the signature ClassRoom(string, int)

– The constructor ClassRoom() has the signature ClassRoom()
– Constructors all have the same name, but they are unique if

their signatures (parameters) are different

Calling overloaded methods

• Previously, when you used the dot operator and wrote the name
of a method, the name was enough to determine which method
to execute – myRect.GetLength() would call the GetLength
method

• When a method is overloaded, you must use the entire signature to
determine which method gets executed

• A method call has a “signature” too: the name of the method, and
the type and order of the arguments

• C# will execute the method whose signature matches the signature
of the method call

• Example: myRect.Multiply(4); has the signature Multi-
ply(int), so C# will look for a method in the Rectangle class
that has the signature Multiply(int). This matches the method
public void Multiply(int factor)

• Example: myRect.Multiply(3, 5); has the signature Multi-
ply(int, int), so C# will look for a method with that signature
in the Rectangle class. This matches the method public void

140

Multiply(int lengthFactor, int widthFactor)
• The same process happens when you instantiate a class with multi-

ple constructors: C# calls the constructor whose signature matches
the signature of the instantiation

• If no method or constructor matches the signature of the
method call, you get a compile error. You still cannot write
myRect.Multiply(1.5) if there is no method whose signature is
Multiply(double).

Constructors in UML
• Now that we can write constructors, they should be part of the UML

diagram of a class

– No need to include the default constructor, or one you write
yourself that takes no arguments

– Non-default constructors go in the operations section (box 3)
of the UML diagram

– Similar syntax to a method: [+/-] <<constructor>>
[name]([parameter name]: [parameter type])

– Note that the name will always match the class name
– No return type, ever
– Annotation “«constructor»” is nice, but not necessary: if the

method name matches the class name, it is a constructor

• Example for ClassRoom:

!include uml/ClassRoom_with_constructor.md

Properties
• Attributes are implemented with a standard “template” of code

• Remember, “attribute” is the abstract concept of some data stored
in an object; “instance variable” is the way that data is actually
stored

• First, declare an instance variable for the attribute

• Then write a “getter” method for the instance variable

• Then write a “setter” method for the instance variable

• With this combination of instance variable and methods, the object
has an attribute that can be read (with the getter) and written (with
the setter)

• For example, this code implements a “width” attribute for the class
Rectangle:

141

class Rectangle
{

private int width;
public void SetWidth(int value)
{

width = value;
}
public int GetWidth()
{

return width;
}

}

• Note that there is a lot of repetitive or “obvious” code here:

– The name of the attribute is intended to be “width,” so you
must name the instance variable width, and the methods
GetWidth and SetWidth, repeating the name three times.

– The attribute is intended to be type int, so you must ensure
that the instance variable is type int, the getter has a return
type of int, and the setter has a parameter type of int. Simi-
larly, this repeats the data type three times.

– You need to come up with a name for the setter’s parameter,
even though it also represents the width (i.e. the new value
you want to assign to the width attribute). We usually end up
naming it “widthParameter” or “widthParam” or “newWidth”
or “newValue.”

• Properties are a “shorthand” way of writing this code: They imple-
ment an attribute with less repetition

Writing properties

• Declare an instance variable for the attribute, like before

• A property declaration has 3 parts:

– Header, which gives the property a name and type (very simi-
lar to variable declaration)

– get accessor, which declares the “getter” method for the
property

– set accessor, which declares the “setter” method for the prop-
erty

• Example code, implementing the “width” attribute for Rectangle
(this replaces the code in the previous example):

class Rectangle
{

142

private int width;
public int Width
{

get
{

return width;
}
set
{

width = value;
}

}
}

• Header syntax: [public/private] [type] [name]

• Convention (not rule) is to give the property the same name as the
instance variable, but capitalized – C# is case sensitive

• get accessor: Starts with the keyword get, then a method body
inside a code block (between braces)

– get is like a method header that always has the same name,
and its other features are implied by the property’s header

– Access modifier: Same as the property header’s, i.e. public in
this example

– Return type: Same as the property header’s type, i.e. int in
this example (so imagine it says public int get())

– Body of get section is exactly the same as body of a “getter”:
return the instance variable

• set accessor: Starts with the keyword set, then a method body
inside a code block

– Also a method header with a fixed name, access modifier, re-
turn type, and parameter

– Access modifier: Same as the property header’s, i.e. public in
this example

– Return type: Always void (like a setter)
– Parameter: Same type as the property header’s type, name

is always “value”. In this case that means the parameter is
int value; imagine the method header says public void
set(int value)

– Body of set section looks just like the body of a setter: Assign
the parameter to the instance variable (and the parameter
is always named “value”). In this case, that means width =
value

143

Using properties

• Properties are members of an object, just like instance variables and
methods

• Access them with the “member access” operator, aka the dot op-
erator

– For example, myRect.Widthwill access the property we wrote,
assuming myRect is a Rectangle

• A complete example, where the “length” attribute is implemented
the “old” way with a getter and setter, and the “width” attribute is
implemented with a property:

!include code/snippets/usingWidthProperty.cs

• Properties “act like” variables: you can assign to them and read
from them

• Reading from a property will automatically call the get accessor
for that property

– For example, Console.WriteLine($"The width is
{myRectangle.Width}"); will call the get accessor in-
side the Width property, which in turn executes return
width and returns the current value of the instance variable

– This is equivalent to Console.WriteLine($"The width is
{myRectangle.GetWidth()}"); using the “old” Rectangle
code

• Assigning to (writing) a property will automatically call the set ac-
cessor for that property, with an argument equal to the right side
of the = operator

– For example, myRectangle.Width = 15; will call the set ac-
cessor inside the Width property, with value equal to 15

– This is equivalent to myRectangle.SetWidth(15); using the
“old” Rectangle code

Properties in UML

• Since properties represent attributes, they go in the “attributes” box
(the second box)

• If a property will simply “get” and “set” an instance variable of the
same name, you do not need to write the instance variable in the
box

– No need to write both the property Width and the instance
variable width

144

• Syntax: [+/-] <<property>> [name]: [type]

• Note that the access modifier (+ or -) is for the property, not the
instance variable, so it is + if the property is public (which it usually
is)

• Example for Rectangle, assuming we converted both attributes to
use properties instead of getters and setters:

!include uml/Rectangle_with_properties.md

• We no longer need to write all those setter and getter methods,
since they are “built in” to the properties

The static Keyword

Static Methods
Different ways of calling methods

• Usually you call a method by using the “dot operator” (member
access operator) on an object, like this:

Rectangle rect = new Rectangle();
rect.SetLength(12);

The SetLength method is defined in the Rectangle class. In order
to call it, we need an instance of that class, which in this case is the
object rect.

• However, sometimes we have written code where we call a
method using the dot operator on the name of a class, not an
object. For example, the familiar WriteLine method:

Console.WriteLine("Hello!");

Notice that we have never needed to write new Console() to in-
stantiate a Console object before calling this method.

• More recently, we learned about the Array.Resize method,
which can be used to resize an array. Even though arrays are
objects, we call the Resize method on the Array class, not the
particular array object we want to resize:

int[] myArray = {10, 20, 30};
Array.Resize(ref myArray, 6);

• Methods that are called using the name of the class rather than an
instance of that class are static methods

145

Declaring staticmethods

• Static methods are declared by adding the static keyword to the
header, like this:

class Console
{

public static void WriteLine(string value)
{

...
}

}

• The static keyword means that this method belongs to the class
“in general,” rather than an instance of the class

• Thus, you do not need an object (instance of the class) to call a
static method; you only need the name of the class

staticmethods and instances

• Normal, non-static methods are always associated with a particular
instance (object)

• When a normal method modifies an instance variable, it always
“knows” which object to modify, because you need to specify the
object when calling it

– For example, the SetLength method is defined like this:

class Rectangle
{

private int length;
private int width;
public void SetLength(int lengthParameter)
{

length = lengthParameter;
}

}

When you call the method with rect.SetLength(12), the
length variable automatically refers to the length instance
variable stored in rect.

• Static methods are not associated with any instance, and thus can-
not use instance variables

• For example, we could attempt to declare the ComputeArea
method of Rectangle as a static method, but this would not
compile:

146

class Rectangle
{

private int length;
private int width;
public void SetLength(int lengthParameter)
{

length = lengthParameter;
}
public static int ComputeArea()
{

return length * width;
}

}

– To call this static method, you would write Rectangle.ComputeArea();
– Since no Rectangle object is specified, which object’s length

and width should be used in the computation?

Uses for staticmethods

• Since static methods cannot access instance variables, they do not
seem very useful

• One reason to use them: when writing a function that does not
need to “save” any state, and just computes an output (its return
value) based on some input (its parameters)

• Math-related functions are usually written as static methods. The
.NET library comes with a class named Math that defines several
static methods, like these:

public static double Pow(double x, double y)
{

//Computes and returns x^y
}
public static double Sqrt(double x)
{

//Computes and returns the square root of x
}
public static int Max(int x, int y)
{

//Returns the larger of the two numbers x and y
}
public static int Min(int x, int y)
{

//Returns the smaller of the two numbers x and y
}

147

Note that none of them need to use any instance variables.

• Defining several static methods in the same class (like in class Math)
helps to group together similar or related functions, even if you
never create an object of that class

• Static methods are also useful for providing the program’s “entry
point.” Remember that your program must always have a Main
method declared like this:

class Program
{

static void Main(string[] args)
{

...
}

}

– When your program first starts, no objects exist yet, which
means no “normal” methods can be called

– The .NET run-time (the interpreter that runs a C# program) must
decide what code to execute to make your program start run-
ning

– It can call Program.Main() without creating an object, or
knowing anything else about your program, because Main is
a static method

• Static methods can be used to “help” other methods, both static
and non-static

– It’s easy to call a static method from within the same class:
You can just write the name of the method, without the
class name, i.e. MethodName(args) instead of Class-
Name.MethodName(args)

– For example, the Array class has a static method named Copy
that copies the contents of one array into another array. This
makes it very easy to write the Resize method:

class Array
{

public static void Copy(Array source, Array dest, int length)
{
//Copy [length] elements from source to dest, in the same order

}
public static void Resize<T>(ref T[] array, int newSize)
{

T[] newArray = new T[newSize]
Copy(array, newArray, Math.Min(array.Length, newSize));

array = newArray;

148

}
}

Since arrays are fixed-size, the only way to resize an array is to
create a new array of the new size and copy the data from the
old array into the new array. This Resize method is easy to read
because the act of copying the data (which would involve a
for loop) is written separately, in the Copy method, and Resize
just needs to call Copy.

– Similarly, you can add additional static methods to the class
that contains Main, and call them from within Main. This can
help you separate a long program into smaller, easier-to-read
chunks. It also allows you to re-use the same code multiple
times without copying and pasting it.

class Program
{

static void Main(string[] args)
{

int userNum1 = InputPositiveNumber();
int userNum2 = InputPositiveNumber();

int part1Result = DoPart1(userNum1, userNum2);
DoPart2("Bananas", part1Result);

}
static int InputPositiveNumber()
{

int number;
bool success;
do
{
Console.WriteLine("Please enter a positive number");
success = int.TryParse(Console.ReadLine(), out number);
} while(!success || number < 0);
return number;

}
static int DoPart1(int a, int b)
{

...
}
static void DoPart2(string x, int y)
{

...
}

}

In this example, our program needs to read two different num-
bers from the user, so we put the input-validation loop into the

149

InputPositiveNumber method instead of writing it twice in
the Mainmethod. It then has two separate “parts” (computing
some result with the two user-input numbers, and combining
that computed number with a string to display some output),
which we write in the two methods DoPart1 and DoPart2. This
makes our actual Main method only 4 lines long.

Static Variables
Defining static variables

• The static keyword can be used in something that looks like an
instance variable declaration:

class Rectangle
{

private static int NumRectangles = 0;
...

}

• This declares a variable that is stored with the class definition, not
inside an object (it is not an instance variable)

• Unlike an instance variable, there is only one copy in the entire pro-
gram, and any method that refers to NumRectangles will access
the same variable, no matter which object the method is called on

• Since it is not an instance variable, it does not get initialized in the
constructor. Instead, you must initialize it with a value when you
declare it, more like a local variable (in this case, NumRectangles
is initialized to 0).

• It’s OK to declare a static variable with the public access mod-
ifier, because it is not part of any object’s state. Thus, accessing
the variable from outside the class will not violate encapsulation,
the principle that an object’s state should only be modified by that
object.

– For example, we could use the NumRectangles variable to
count the number of rectangles in a program by making it pub-
lic. We could define it like this:

class Rectangle
{

public static int NumRectangles = 0;
...

}

and use it like this, in a Main method:

150

Rectangle myRect = new Rectangle();
Rectangle.NumRectangles++;
Rectangle myOtherRect = new Rectangle();
Rectangle.NumRectangles++;

Using static variables

• Since all instances of a class share the same static variables, you
can use them to keep track of information about “the class as a
whole” or “all the objects of this type”

• A common use for static variables is to count the number of in-
stances of an object that have been created so far in the program

– Instead of “manually” incrementing this counter, like in our pre-
vious example, we can increment it inside the constructor:

class Rectangle
{

public static int NumRectangles = 0;
private int length;
private int width;
public Rectangle(int lengthP, int widthP)
{

length = lengthP;
width = widthP;
NumRectangles++;

}
}

– Each time this constructor is called, it initializes a new Rect-
angle object with its own copy of the length and width vari-
ables. It also increments the single copy of the NumRectangles
variable that is shared by all Rectangle objects.

– The variable can still be accessed from the Main method (be-
cause it is public), where it could be used like this:

Rectangle rect1 = new Rectangle(2, 4);
Rectangle rect2 = new Rectangle(7, 5);
Console.WriteLine(Rectangle.NumRectangles

+ " rectangle objects have been created");

When rect1 is instantiated, its copy of length is set to 2 and
its copy of width is set to 4, then the single NumRectangles
variable is incremented to 1. Then, when rect2 is instantiated,
its copy of length is set to 7 and its copy of width is set to 5,
and the NumRectangles variable is incremented to 2.

151

• Static variables are also useful for constants

– The const keyword, which we learned about earlier, is actually
very similar to static

– A const variable is just a static variable that cannot be mod-
ified

– Like a static variable, it can be accessed using the name of
the class where it is defined (e.g. Math.PI), and there is only
one copy for the entire program

Static methods and variables

• Static methods cannot access instance variables, but they can ac-
cess static variables

• There is no ambiguity when accessing a static variable: you do not
need to know which object’s variable to access, because there is
only one copy of the static variable shared by all objects

• This means you can write a “getter” or “setter” for a static variable,
as long as it is a static method. For example, we could improve
our NumRectangles counter by ensuring that the Mainmethod can
only read it through a getter method, like this:

class Rectangle
{

private static int NumRectangles = 0;
private int length;
private int width;
public Rectangle(int lengthP, int widthP)
{

length = lengthP;
width = widthP;
NumRectangles++;

}
public static int GetNumRectangles()
{

return NumRectangles;
}

}

– The NumRectangles variable is now declared private,
which means only the Rectangle constructor will be able
to increment it. Before, it would have been possible
for the Main method to execute something liek Rectan-
gle.NumRectangles = 1; and throw off the count.

– The GetNumRectangles method cannot access length or

152

width because they are instance variables, but it can access
NumRectangles

– The static method would be called from the Main method like
this:

Rectangle rect1 = new Rectangle(2, 4);
Rectangle rect2 = new Rectangle(7, 5);
Console.WriteLine(Rectangle.GetNumRectangles()

+ " rectangle objects have been created");

Summary of static access rules

• Static variables and instance variables are both fields of a class;
they can also be called “static fields” and “non-static fields”

• This table summarizes how methods are allowed to access them:

Static Field Non-static Field

Static method Yes No
Non-static method Yes Yes

Static Classes
• The static keyword can also be used in a class declaration

• If a class is declared static, all of its members (fields and methods)
must be static

• This is useful for classes that serve as “utility libraries” containing a
collection of functions, and are not supposed to be instantiated
and used as objects

• For example, the Math class is declared like this:

static class Math
{

public static double Sqrt(double x)
{

...
}
public static double Pow(double x, double y)
{

...
}

}

153

There is no need to ever create a Math object, but all of these meth-
ods belong together (within the same class) because they all imple-
ment standard mathematical functions.

Introduction

Decisions are a constant occurrence in daily life. For instance consider
an instructor teaching CSCI 1301. At the beginning of class the instructor
may

• Ask if there are questions. If a student has a question, then the in-
structor will answer it, and ask again (“Anything else?”).

• When there are no more questions, the instructor will move on to
the next step.

• If there is a quiz scheduled, the next step will be distributing the quiz.
• If there is no quiz scheduled or the quiz is complete (and collected),

the instructor may introduce the lecture topic (“Today, we will be
discussing Decisions and Decision Structures”) and start the class.

• etc.

This type of “branching” between multiple choices can be represented
with an activity diagram320:

In C#, we will express

• repetition (or “loops”) (“As long as there are questions…”) with the
while, do…while and for keywords,

• branching (“If there is a quiz…”) with the if, if…else and switch
keywords.

Both structures need a datatype to express the result of a decision (“Is it
true that there are questions.”, or “Is it false that there is a quiz.”) called
Booleans. Boolean values can be set with conditions, that can be com-
posed in different ways using three operators (“and”, “or” and “not”).
For example, “If today is a Monday or Wednesday, and it is not past
10:10 am, the class will also include a brief reminder about the upcom-
ing exam.”

Booleans

Variables
We can store if something is true or false (“The user has reached the age
of majority”, “The switch is on”, “The user is using Windows”, “This com-

320https://www.wikiwand.com/en/Activity_diagram

154

https://www.wikiwand.com/en/Activity_diagram

Teaching a class

Ask for questions

Answer question

Introduce class

Distribute quiz Start class

[Question] [No question]

[Quiz] [No quiz]

Figure 14: “An Activity Diagram on Teaching a Class”

155

puter’s clock indicates that we are in the afternoon”, …) in a variable of
type boolean, which is also known as a boolean flag. Note that true
and false are the only possible two values for boolean variables: there
is no third option!

We can declare, assign, initialize and display a boolean variable (flag)
as with any other variable:

bool learning_how_to_program = true;
Console.WriteLine(learning_how_to_program);

Operations on Boolean Values
Boolean variables have only two possible values (true and false), but
we can use three operations to construct more complex booleans:

1. “and” (&&, conjunction),
2. “or” (||, disjunction),
3. “not” (!, negation).

Each has the precise meaning described here:

1. the condition “A and B” is true if and only if A is true, and B is true,
2. “A or B” is false if and only if A is false, and B is false (that is, it takes

only one to make their disjunction true),
3. “not A” is true if and only if A is false (that is, “not” “flips” the value it

is applied to).

The expected results of these operations can be displayed in truth tables,
as follows:

Operation Value

true && true true
true && false false
false && true false
false && false false

Operation Value

true \|\| true true
true \|\| false true
false \|\| true true
false \|\| false false

156

Operation Value

!true false
!false true

These tables can also be written in 2-dimensions, as can be seen for con-
junction on wikipedia321.

Equality and Relational Operators
Boolean values can also be set through expressions, or tests, that “eval-
uate” a condition or series of conditions as true or false. For instance,
you can write an expression meaning “variable myAge has the value 12”
which will evaluate to true if the value of myAge is indeed 12, and to
false otherwise. To ease your understanding, we will write “expression
→ true” to indicate that “expression” evaluates to true below, but this
is not part of C#’s syntax.

Here we use two kinds of operators:

• Equality operators test if two values (literal or variable) are the same.
This works on all datatypes.

• Relational operators test if a value (literal or variable) is greater or
smaller (strictly or largely) than an other value or variable.

Relational operators will be primarily used for numerical values.

Equality Operators
In C#, we can test for equality and inequality using two operators, ==
and !=.

Mathematical Notation C# Notation Example

= == 3 == 4 → false
≠ != 3!=4 → true

Note that testing for equality uses two equal signs: C# already uses a
single equal sign for assignments (e.g. myAge = 12;), so it had to pick
another notation! It is fairly common across programing languages to
use a single equal sign for assignments and double equal for compar-
isons.

321https://www.wikiwand.com/en/Truth_table#Logical_conjunction_(AND)

157

https://www.wikiwand.com/en/Truth_table#Logical_conjunction_(AND)

Writing a != b (“a is not the same as b”) is actually logically equivalent
to writing !(a == b) (“it is not true that a is the same as b”), and both
expressions are acceptable in C#.

We can test numerical values for equality, but actually any datatype can
use those operators. Here are some examples for int, string, char and
bool:

int myAge = 12;
string myName = "Thomas";
char myInitial = 'T';
bool cs_major = true;
Console.WriteLine("My age is 12: " + (myAge == 12));
Console.WriteLine("My name is Bob: " + (myName == "Bob"));
Console.WriteLine("My initial is Q: " + (myInitial == 'Q'));
Console.WriteLine("My major is Computer Science: " + cs_major);

This program will display

My age is 12: True
My name is Bob: False
My initial is Q: False
My major is Computer Science: True

Remember that C# is case-sensitive, and that applies to the equality op-
erators as well: for C#, the string Thomas is not the same as the string
thomas. This also holds for characters like a versus A.

Console.WriteLine("C# is case-sensitive for string comparison: " + ("thomas" != "Thomas"));
Console.WriteLine("C# is case-sensitive for character comparison: " + ('C' != 'c'));
Console.WriteLine("But C# does not care about 0 decimal values: " + (12.00 == 12));

This program will display:

C# is case-sensitive for string comparison: True
C# is case-sensitive for character comparison: True
But C# does not care about 0 decimal values: True

Relational Operators
We can test if a value or a variable is greater than another, using the
following relational operators.

Mathematical Notation C# Notation Example

> > 3 > 4 → false
< < 3 < 4 → true

≥ or ⩾ >= 3 >= 4 → false
≤ or ⩽ <= 3 <= 4 → true

158

Relational operators can also compare char, but the order is a bit com-
plex (you can find it explained, for instance, in this stack overflow an-
swer322).

Precedence of Operators
All of the operators have a “precedence”, which is the order in which
they are evaluated. The precedence is as follows:

Operator

! is evaluated before
*, /, and % which are evaluated before
+ and - which are evaluated before

<, >, <=, and >= which are evaluated before
== and != which are evaluated before

&& which is evaluated before
|| which comes last.

• Operators with higher precedence (higher in the table) are evalu-
ated before operators with lower precedence (lower in the table).
For instance, in an expression like 2*3+4, 2*3 will have higher prece-
dence than 3+4, and thus be evaluated first: 2*3+4 is to be read
as (2*3)+4 = 6 + 4 = 10 and not as 2*(3+4) = 2*7 = 14.

• Operators on the same row have equal precedence and are eval-
uated in the order they appear, from left to right: in 1-2+3, 1-2 will
be evaluated before 2+3: 1-2+3 is to be read as (1-2)+3 = -1 +
3 = 2 and not as 1-(2+3) = 1-5 = 4.

• Forgetting about precedence can lead to errors that can be hard
to debug: for instance, an expression such as ! 4 == 2 will give
the error

The `!' operator cannot be applied to operand of type
`int'↪

Since ! has a higher precedence than ==, C# first attempts to compute
the result of !4, which corresponds to “not 4”. As negation (!) is an
operation that can be applied only to booleans, this expression does
not make sense and C# reports an error. The expression can be rewritten
to change the order of evaluation by using parentheses, e.g. you can
write !(4 == 2), which will correctly be evaluated to true.

322https://stackoverflow.com/a/14967721/

159

https://stackoverflow.com/a/14967721/

if

if Statements
Introduction

• Recall from a previous lecture (Booleans and Comparisons) that de-
cision structures change the flow of code execution based on con-
ditions

• Now that we know how to write conditions in C#, we can write de-
cision structures

• Our first decision structure is the if statement, which executes a block
of code only if a condition is true

Example code with an if statement

Console.WriteLine("Enter your age");
int age = int.Parse(Console.ReadLine());
if (age >= 18)
{

Console.WriteLine("You can vote!");
}
Console.WriteLine("Goodbye");

• After the keyword if is a condition, in parentheses: age >= 18

• On the next line after the if statement, the curly brace begins a
code block. The code in this block is “controlled” by the if state-
ment.

• If the condition age >= 18 is true, the code in the block (the Write-
Line statement with the text “You can vote!”) gets executed, then
execution proceeds to the next line (the WriteLine statement that
prints “Goodbye”)

• If the condition age >= 18 is false, the code in the block gets
skipped, and execution proceeds directly to the line that prints
“Goodbye”

• The behavior of this program can be represented by this flowchart:

• Example interaction 1:

Enter your age
20
You can vote!
Goodbye

When the user enters “20”, the value 20 is assigned to the age vari-
able, so the condition age >= 18 is true. This means the code inside

160

Determining if a user can vote in the US

Ask for age

Age?

You can vote!

Thanks for using our program.

[Major]

Figure 15: “A flowchart representation of an if statement”

the if statement’s block gets executed.

• Example interaction 2:

Enter your age
17
Goodbye

When the user enters “17”, the value 17 is assigned to the age vari-
able, so the condition age >= 18 is false, and the if statement’s
code block gets skipped.

Syntax and rules for if statements

• Formally, the syntax for an if statement is this:

if (<condition>)
{

<statements>
}

• The “condition” in parentheses can be any expression that pro-
duces a bool value, including all of the combinations of conditions
we saw in the previous lecture (Booleans and Comparisons). It can
even be a bool variable, since a bool variable “contains” a bool
value.

161

• Note that there is no semicolon after the if (<condition>). It’s
a kind of “header” for the following block of code, like a method
header.

• The statements in the code block will be executed if the condition
evaluates to true, or skipped if it evaluates to false

• If the code block contains only one statement, the curly braces can
be omitted, producing the following syntax:

if(<condition>)
<statement>

For example, the if statement in our previous example could be
written like this, since there was only one statement in the code
block:

if(age >= 18)
Console.WriteLine("You can vote!");

Console.WriteLine("Goodbye");

• Omitting the curly braces is slightly dangerous, though, because
it makes it less obvious which line of code is controlled by the if
statement. It is up to you, the programmer, to remember to indent
the line after the if statement, and then de-indent the line after
that; indentation is just a convention. Curly braces make it easier
to see where the if statement starts and ends.

if-else Statements
Example:

if(age >= 18)
{

Console.WriteLine("You can vote!");
}
else
{

Console.WriteLine("You are too young to vote");
}
Console.WriteLine("Goodbye");

• The if-else statement is a decision structure that chooses which
block of code to execute, based on whether a condition is true or
false

• In this example, the condition is age >= 18 again

• The first block of code (underneath the if) will be executed if the
statement is true – the console will display “You can vote!”

162

• The second block of code, which comes after the keyword else,
will be executed if the statement is false – so if the user’s age is less
than 18, the console will display “You are too young to vote”

• Only one of these blocks of code will be executed; the other will be
skipped

• After executing one of the two code blocks, execution continues
at the next line after the else block, so in either case the console
will next display “Goodbye”

• The behavior of this program can be represented by this flowchart:

Determining if a user can vote in the US

Ask for age

Age?

You can vote! You are too young!

Thanks for using our program.

[Major] [Not Major]

Figure 16: “A flowchart representation of an if-else statement”

Syntax and comparison

• Formally, the syntax for an if-else statement is this:

if (<condition>)
{

<statement block 1>
}
else
{

<statement block 2>
}

163

• As with the if statement, the condition can be anything that pro-
duces a bool value

• Note that there is no semicolon after the else keyword

• If the condition is true, the code in statement block 1 is executed
(this is sometimes called the “if block”), and statement block 2 is
skipped

• If the condition is false, the code in statement block 2 is executed
(this is sometimes called the “else block”), and statement block 1 is
skipped

• This is very similar to an if statement; the difference is what happens
if the condition is false

– With an if statement, the “if block” is executed if the condition
is true, but nothing happens if the condition is false.

– With an if-else statement, the code in the “else block” is ex-
ecuted if the condition is false, so something always happens -
one of the two code blocks will get executed

Nested if-else Statements
• If-else statements are used to change program flow based on a

condition; they represent making a decision

• Sometimes decisions are more complex than a single yes/no ques-
tion: once you know whether a certain condition is true or false,
you then need to ask another question (check another condition)
based on the outcome

• For example, we could improve our voting program to ask the user
whether he/she is a US citizen, as well as his/her age. This means
there are two conditions to evaluate, as shown in this flowchart:

– First, the program should test whether the user is a citizen. If not,
there is no need to check the user’s age, since he/she cannot
vote anyway

– If the user is a citizen, the program should then test whether the
user is over 18 to determine if he/she is old enough to vote.

Using nested if statements

• An if statement’s code block can contain any kind of statements,
including another if statement

• Putting an if statement inside an if block represents making a se-
quence of decisions - once execution has reached the inside of an

164

Determining if a user can vote in the US

Ask for citizenship and age

Citizen?

Sorry, only citizens can vote

Age?

You can vote! You are too young!

Thanks for using our program.

[US citizen] [Non-US citizen]

[Major] [Not major]

Figure 17: “A flowchart representation of the nested if-else statement”

165

if block, your program “knows” that the if condition is true, so it
can proceed to make the next decision

• For the voting example, we can implement the decision structure
from the flowchart above with this code, assuming age is an int
and usCitizen is a bool:

if(usCitizen == true)
{

if(age >= 18)
{

Console.WriteLine("You can vote!");
}
else
{

Console.WriteLine("You are too young to vote");
}

}
else
{

Console.WriteLine("Sorry, only citizens can vote");
}
Console.WriteLine("Goodbye");

– First, the program tests the condition usCitizen == true, and
if it is true, the code in the first “if block” is executed

– Within this if block is another if statement that tests the condi-
tion age >= 18. This represents checking the user’s age after
determining that he/she is a US citizen - execution only reaches
this second if statement if the first one evaluated to true. So
“You can vote” is printed if both usCitizen == true and age
>= 18

– If the condition usCitizen == true is false, the if block is
skipped and the else block is executed instead, so the entire
inner if statement is never executed – the user’s age does not
matter if he/she isn’t a citizen

– Note that the condition usCitizen == true could also be
expressed by just writing the name of the variable usCitizen
(i.e., the if statement would be if(usCitizen)), because us-
Citizen is a bool variable. We do not need the equality com-
parison operator to test if it is true, because an if statement
already tests whether its condition is true (and a bool variable
by itself is a valid condition)

– Note that indentation helps you match up an else block to
its corresponding if block. The meaning of else depends on
which if statement it goes with: the “outer” else will be exe-
cuted if the condition usCitizen == true is false, while the

166

“inner” else will be executed if the condition age >= 18 is
false.

• Nested if statements do not need to be the only code in the if
block; you can still write other statements before or after the nested
if

• For example, we could change our voting program so that it only
asks for the user’s age if he/she is a citizen:

if(usCitizen == true)
{

Console.WriteLine("Enter your age");
int age = int.Parse(Console.ReadLine());
if(age >= 18)
{

Console.WriteLine("You can vote!");
}
else
{

Console.WriteLine("You are too young to vote");
}

}
else
{

Console.WriteLine("Sorry, only citizens can vote");
}
Console.WriteLine("Goodbye");

if-else-if Statements
• Sometimes your program needs to test multiple conditions at once,

and take different actions depending on which one is true
• Example: We want to write a program that tells the user which floor

a ClassRoom object is on, based on its room number
– If the room number is between 100 and 200 it is on the first floor;

if it is between 200 and 300 it is on the second floor; if it is greater
than 300 it is on the third floor

• There are 3 ranges of numbers to test, and 3 possible results, so we
cannot do it with a single if-else statement

If-else-if syntax

• An if-else-if statement looks like this:

if(<condition 1>)
{

167

<statement block 1>
}
else if(<condition 2>)
{

<statement block 2>
}
else if(<condition 3>)
{

<statement block 3>
}
else
{

<statement block 4>
}

• Unlike an if statement, there are multiple conditions

• They are evaluated in order, top to bottom

• Just like with if-else, exactly one block of code will get executed

• If condition 1 is true, statement block 1 is executed, and everything
else is skipped

• If condition 1 is false, statement block 1 is skipped, and execution
proceeds to the first else if line; condition 2 is then evaluated

• If condition 2 is true, statement block 2 is executed, and everything
else is skipped

– Thus, statement block 2 is only executed if condition 1 is false
and condition 2 is true

• Same process repeats for condition 3: If condition 2 is false, con-
dition 3 is evaluated, and statement block 3 is either executed or
skipped

• If all the conditions are false, the final else block (statement block
4) is executed

Using if-else-if to solve the “floors problem”

• Assuming myRoom is a ClassRoomobject, this code will display which
floor it is on:

if(myRoom.GetNumber() >= 300)
{

Console.WriteLine("Third floor");
}
else if(myRoom.GetNumber() >= 200)

168

{
Console.WriteLine("Second floor");

}
else if(myRoom.GetNumber() >= 100)
{

Console.WriteLine("First floor");
}
else
{

Console.WriteLine("Invalid room number");
}

• If the room number 300 or greater (e.g. 365), the first “if” block is
executed, and the rest are skipped. The program prints “Third floor”

• If the room number is less than 300, the program continues to the
line else if(myRoom.GetNumber() >= 200) and evaluates the
condition

• If myRoom.GetNumber() >= 200 is true, it means the room number
is between 200 and 299, and the program will print “Second floor.”
Even though the condition only tests whether the room number is
>= 200, this condition is only evaluated if the first one was false, so
we know the room number must be < 300.

• If the second condition is false, the program continues to the line
else if(myRoom.GetNumber() >= 100), evaluates the condition,
and prints “First floor” if it is true.

• Again, the condition myRoom.GetNumber() >= 100 is only evalu-
ated if the first two conditions have already been tested and turned
out false, so we know the room number is less than 300 and less than
200.

• In the final else block, the program prints “Invalid room number”
because this block is only executed if the room number is less than
100 (all three conditions were false).

if-else-if with different conditions

• We often use if-else-if statements to test the same variable multiple
times, but there is no requirement for the conditions to use the same
variable

• An if-else-if statement can use several different variables, and its
conditions can be completely unrelated, like this:

int x;
if(myIntVar > 12)

169

{
x = 10;

}
else if(myStringVar == "Yes")
{

x = 20;
}
else if(myBoolVar)
{

x = 30;
}
else
{

x = 40;
}

• Note that the order of the else-if statements still matters, because
they are evaluated top-to-bottom. If myIntVar is 15, it does not
matter what values myStringVar or myBoolVar have, because the
first if block (setting x to 10) will get executed.

• Example outcomes of executing this code (which value x is as-
signed) based on the values of myIntVar, myStringVar, and
myBoolVar:

myIntVar myStringVar myBoolVar x

12 “Yes” true 20
15 “Yes” false 10
-15 “yes” true 30
10 “yes” false 40

if-else-if vs. nested if

• Sometimes a nested if statement can be rewritten as an if-else-
if statement

• This reduces the amount of indentation in your code, which makes
it easier to read

• To convert a nested if statement to if-else-if, you’ll need to
combine the conditions of the “outer” and “inner” if statements,
using the logical operators

• A nested if statement inside an if block is testing whether the
outer if’s condition is true and its own condition is true, so com-
bine them with the && operator

170

• The else block of the inner if statement can be rewritten as an
else if by combining the outer if’s condition with the opposite of
the inner if’s condition, since “else” means “the condition is false.”
We need to explicitly write down the “false condition” that is nor-
mally implied by else.

• For example, we can rewrite this nested if statement:

if(usCitizen == true)
{

if(age >= 18)
{

Console.WriteLine("You can vote!");
}
else
{

Console.WriteLine("You are too young to vote");
}

}
else
{

Console.WriteLine("Sorry, only citizens can vote");
}

as this if-else-if statement:

if(usCitizen == true && age >= 18)
{

Console.WriteLine("You can vote!");
}
else if(usCitizen == true && age < 18)
{

Console.WriteLine("You are too young to vote");
}
else
{

Console.WriteLine("Sorry, only citizens can vote");
}

• Note that the else from the inner if statement becomes else
if(usCitizen == true && age < 18) because we combined
the outer if condition (usCitizen == true) with the opposite of
the inner if condition (age >= 18).

• Not all nested if statements can be rewritten this way. If there is
additional code in a block, other than the nested if statement, it
is harder to convert it to an if-else-if

• For example, in this nested if statement:

171

if(usCitizen == true)
{

Console.WriteLine("Enter your age");
int age = int.Parse(Console.ReadLine());
if(age >= 18)
{

Console.WriteLine("You can vote!");
}
else
{

Console.WriteLine("You are too young to vote");
}

}
else
{

Console.WriteLine("Sorry, only citizens can vote");
}
Console.WriteLine("Goodbye");

the code that asks for the user’s age executes after the outer if
condition is determined to be true, but before the inner ifcondition
is tested. There would be nowhere to put this code if we tried to
convert it to an if-else-if statement, since both conditions must be
tested at the same time (in if(usCitizen == true && age >=
18)).

• On the other hand, any if-else-if statement can be rewritten as a
nested if statement

• To convert an if-else-if statement to a nested if statement, rewrite
each else if as an else block with a nested if statement inside
it – like you’re splitting the “if” from the “else”

• This results in a lot of indenting if there are many else if lines, since
each one becomes another nested if inside an else block

• For example, the “floors problem” could be rewritten like this:

if(myRoom.GetNumber() >= 300)
{

Console.WriteLine("Third floor");
}
else
{

if(myRoom.GetNumber() >= 200)
{

Console.WriteLine("Second floor");
}
else

172

{
if(myRoom.GetNumber() >= 100)
{

Console.WriteLine("First floor");
}
else
{

Console.WriteLine("Invalid room number");
}

}
}

Switch

Switch Statements
Multiple equality comparisons

• In some situations, your program will need to test if a variable is
equal to one of several values, and perform a different action
based on which value the variable matches

• For example, you have an int variable named month containing a
month number, and want to convert it to a string with the name
of the month. This means your program needs to take a different
action depending on whether month is equal to 1, 2, 3, … or 12:

• One way to do this is with a series of if-else-if statements, one
for each possible value, like this:

Console.WriteLine("Enter the month as a number between 1 and 12.");
int month = int.Parse(Console.ReadLine());
string monthName;
if(month == 1)
{

monthName = "January";
}
else if(month == 2)
{

monthName = "February";
}
else if(month == 3)
{

monthName = "March";
}
else if(month == 4)

173

Assigning the number of a month to its name

Ask the number

January February December Error!

”The number ” + month + ” corresponds to. . .

[1]

[2] [12]

[Not between 1 and 12]

Figure 18: “A flowchart representation of the mapping between month
number and name”

{
monthName = "April";

}
else if(month == 5)
{

monthName = "May";
}
else if(month == 6)
{

monthName = "June";
}
else if(month == 7)
{

monthName = "July";
}
else if(month == 8)
{

monthName = "August";
}
else if(month == 9)
{

174

monthName = "September";
}
else if(month == 10)
{

monthName = "October";
}
else if(month == 11)
{

monthName = "November";
}
else if(month == 12)
{

monthName = "December";
}
else
{

monthName = "Error!"; // Invalid month
}
Console.WriteLine("The number " + month + " corresponds to the month " + monthName + ".")

• This code is very repetitive, though: every else if statement
is almost the same, with only the number changing. The text
“if(month ==” is copied over and over again.

Syntax for switch statements

• A switch statement is a simpler, easier way to compare a single
variable against multiple possible values

• It is written like this:

switch (<variable name>)
{

case <value 1>:
<statement block 1>
break;

case <value 2>:
<statement block 2>
break;

…
default:

<statement block n>
break;

}

• First, the “header” of the switch statement names the variable that
will be compared

175

• The “body” of the switch statement is enclosed in curly braces, and
contains multiple case statements

• Each case statement gives a possible value the variable could
have, and a block of statements to execute if the variable equals
that value. Statement block 1 is executed if the variable is equal
to value 1, statement block 2 is executed if the variable is equal to
value 2, etc.

• The statement “block” within each case is not enclosed in curly
braces, unlike if and else if blocks. Instead, it begins on the
line after the case statement, and ends with the keyword break.

• The default statement is like the else statement: It defines code
that gets executed if the variable does not match any of the values
in the case statements.

• The values in each case statement must be literals, not variables,
and they must be unique (you cannot write two case statements
with the same value)

Example switch statement

• This program has the same behavior as our previous example, but
uses a switch statement instaed of an if-else-if statement:

Console.WriteLine("Enter the month as a number between 1 and 12.");
int month = int.Parse(Console.ReadLine());
string monthName;
switch(month)
{

case 1:
monthName = "January";
break;

case 2:
monthName = "February";
break;

case 3:
monthName = "March";
break;

case 4:
monthName = "April";
break;

case 5:
monthName = "May";
break;

case 6:
monthName = "June";

176

break;
case 7:

monthName = "July";
break;

case 8:
monthName = "August";
break;

case 9:
monthName = "September";
break;

case 10:
monthName = "October";
break;

case 11:
monthName = "November";
break;

case 12:
monthName = "December";
break;

default:
monthName = "Error!"; // Invalid month
break;

}
Console.WriteLine("The number " + month + " corresponds to the month " + monthName + ".")

• Since the variable in the switch statement is month, each case
statement means, effectively, if (month == <value>). For exam-
ple, case 1: has the same effect as if (month == 1)

• The values in each case statement must be int literals, since month
is an int

• The default statement has the same effect as the final else in the
if-else-if statement: it contains code that will be executed if
month did not match any of the values

switch with multiple statements

• So far, our examples have used only one line of code in each case

• Unlike if-else, you do not need curly braces to put multiple lines
of code in a case

• For example, imagine our “months” program needed to convert a
month number to both a month name and a three-letter abbrevia-
tion. The switch would look like this:

string monthName;

177

string monthAbbrev;
switch(month)
{

case 1:
monthName = "January";
monthAbbrev = "Jan";
break;

case 2:
monthName = "February";
monthAbbrev = "Feb";
break;

// and so on, with all the other months...
}

• The computer knows which statements are included in each case
because of the break keyword. For the “1” case, the block of state-
ments starts after case 1: and ends with the break; after mon-
thAbbrev = "Jan";

Intentionally omitting break

• Each block of code that starts with a case statement must end with
a break statement; it will not automatically end at the next case
statement

– The case statement only defines where code execution starts
when the variable matches a value (like an open {). The break
statement defines where it ends (like a close }).

• However, there is one exception: A case statement with no body
(code block) after it does not need a matching break

• If there is more than one value that should have the same behavior,
you can write case statements for both values above a single block
of code, with no break between them. If either one matches, the
computer will execute that block of code, and then stop at the
break statement.

• In a switch statement with this structure:

switch(<variable>)
{

case <value 1>:
case <value 2>:

<statement block 1>
break;

case <value 3>:
case <value 4>:

178

<statement block 2>
break;

default:
<statement block 3>
break;

}

The statements in block 1 will execute if the variable matches value
1 or value 2, and the statements in block 2 will execute if the vari-
able matches value 3 or value 4.

• For example, imagine our program needs to tell the user which sea-
son the month is in. If the month number is 1, 2, or 3, the season is
the same (winter), so we can combine these 3 cases. This code will
correctly initialize the string season:

switch(month)
{

case 1:
case 2:
case 3:

season = "Winter";
break;

case 4:
case 5:
case 6:

season = "Spring";
break;

case 7:
case 8:
case 9:

season = "Summer";
break;

case 10:
case 11:
case 12:

season = "Fall";
break;

default:
season = "Error!"
break;

}

If month is equal to 1, execution will start at case 1:, but the com-
puter will continue past case 2 and case 3 and execute season
= "Winter". It will then stop when it reaches the break, so season
gets the value “Winter”. Similarly, if month is equal to 2, execution
will start at case 2:, and continue until the break statement, so

179

season will also get the value “Winter”.

• This syntax allows switch statements to have conditions with a log-
ical OR, equivalent to an if condition with an ||, like if(x == 1
|| x == 2)

• For example, the “seasons” statement could also be written as an
if-else-if with || operators, like this:

if(month == 1 || month == 2 || month == 3)
{

season = "Winter";
}
else if(month == 4 || month == 5 || month == 6)
{

season = "Spring";
}
else if(month == 7 || month == 8 || month == 9)
{

season = "Summer";
}
else if(month == 10 || month == 11 || month == 12)
{

season = "Fall"
}
else
{

season = "Error!"
}

Scope and switch

• In C#, the scope of a variable is defined by curly braces (recall that
local variables defined in a method have a scope that ends with
the } at the end of the method)

• Since the case statements in a switch do not have curly braces,
they are all in the same scope: the one defined by the switch
statement’s curly braces

• This means you cannot declare a “local” variable within a case
statement – it will be in scope (visible) to all the other case state-
ments

• For example, imagine you wanted to use a local variable named
nextMonth to do some local computation within each case in the
“months” program. This code will not work:

switch(month)

180

{
case 1:

int nextMonth = 2;
monthName = "January";
// do something with nextMonth...
break;

case 2:
int nextMonth = 3;
monthName = "February";
// do something with nextMonth...
break;

//...
}

The line int nextMonth = 3 would cause a compile error be-
cause a variable named nextMonth already exists – the one de-
clared within case 1.

Limitations of switch

• Not all if-else-if statements can be rewritten as switch state-
ments

• switch can only test equality, so in general, only if statements
whose condition uses == can be converted to switch

• For example, imagine we have a program that determines how
much of a fee to charge a rental car customer based on the num-
ber of miles the car was driven. A variable named mileage con-
tains the number of miles driven, and it is used in this if-else-if
statement:

decimal fee = 0;
if(mileage > 1000)
{

fee = 50.0M;
}
else if(mileage > 500)
{

fee = 25.0M;
}

• This if-else-if statement could not be converted to switch(mileage)
because of the condition mileage > 1000. The switch statement
would need to have a case for each number greater than 1000,
which is infinitely many.

181

While Loops

Introduction to while loops
• There are two basic types of decision structures in all programming

languages. We’ve just learned about the first, which is the “selec-
tion structure,” or if statement. This allows the program to choose
whether or not to execute a block of code, based on a condition.

• The second basic decision structure is the loop, which allows the
program to execute the same block of code repeatedly, and
choose when to stop based on a condition.

• The while statement executes a block of code repeatedly, as long
as a condition is true. You can also think of it as executing the code
repeatedly until a condition is false

Example code with a while loop
int counter = 0;
while(counter <= 3)
{

Console.WriteLine("Hello again!");
Console.WriteLine(counter);
counter++;

}
Console.WriteLine("Done");

• After the keyword while is a condition, in parentheses: counter
<= 3

• On the next line after the while statement, the curly brace begins
a code block. The code in this block is “controlled” by the while
statement.

• The computer will repeatedly execute that block of code as long
as the condition counter <= 3 is true

• Note that inside this block of code is the statement counter++,
which increments counter by 1. So eventually, counter will be
greater than 3, and the loop will stop because the condition is false.

• This program produces the following output:

Hello again!
0
Hello again!
1
Hello again!
2

182

Hello again!
3
Done

Syntax and rules for while loops
• Formally, the syntax for a while loop is this:

while(<condition>)
{

<statements>
}

• Just like with an if statement, the condition is any expression that
produces a bool value (including a bool variable by itself)

• When the computer encounters a while loop, it first evaluates the
condition

• If the condition is false, the loop body (code block) is skipped, just
like with an if statement

• If the condition is true, the loop body is executed

• After executing the loop body, the computer goes back to the
while statement and evaluates the condition again to decide
whether to execute the loop again

• Just like with an if statement, the curly braces can be omitted if
the loop body is just one statement:

while(<condition>)
<statement>

• Examining the example in detail

• When our example program executes, it initializes counter to 0,
then it encounters the loop

• It evaluates the condition counter <= 0, which is true, so it executes
the loop’s body. The program displays “Hello again!” and “0” on
the screen.

• At the end of the code block (after counter++) the program returns
to the while statement and evaluates the condition again. 1 is less
than 3, so it executes the loop’s body again.

• This process repeats two more times, and the program displays
“Hello again!” with “2” and “3”

• After displaying “3”, counter++ increments counter to 4. Then the
program returns to the while statement and evaluates the condi-

183

tion, but counter <= 3 is false, so it skips the loop body and exe-
cutes the last line of code (displaying “Done”)

While loops may execute zero times
• You might think that a “loop” always repeats code, but nothing re-

quires a while loop to execute at least once

• If the condition is false when the computer first encounters the loop,
the loop body is skipped

• For example, if we initialize counter to 5 with our previous loop:

int counter = 5;
while(counter <= 3)
{

Console.WriteLine("Hello again!");
Console.WriteLine(counter);
counter++;

}
Console.WriteLine("Done");

The program will only display “Done,” because the body of the loop
never executes. counter <= 3 is false the first time it is evaluated,
so the program skips the code block and continues on the next line.

Ensuring the loop ends
• If the loop condition is always true, the loop will never end, and

your program will execute “forever” (until you forcibly stop it, or the
computer shuts down)

• Obviously, if you use the value true for the condition, the loop will
execute forever, like in this example:

int number = 1;
while (true)

Console.WriteLine(number++);

• If you do not intend your loop to execute forever, you must ensure
the statements in the loop’s body do something to change a vari-
able in the loop condition, otherwise the condition will stay true

• For example, this loop will execute forever because the loop condi-
tion uses the variable counter, but the loop body does not change
the value of counter:

int counter = 0;
while(counter <= 3)

184

{
Console.WriteLine("Hello again!");
Console.WriteLine(counter);

}
Console.WriteLine("Done");

• This loop will also execute forever because the loop condition uses
the variable num1, but the loop body changes the variable num2:

int num1 = 0, num2 = 0;
while(num1 <= 5)
{

Console.WriteLine("Hello again!");
Console.WriteLine(num1);
num2++;

}
Console.WriteLine("Done");

• It’s not enough for the loop body to simply change the variable; it
must change the variable in a way that will eventually make the
condition false

– For example, if the loop condition is counter <= 5, then the
loop body must increase the value of counter so that it is even-
tually greater than 5

– This loop will execute forever, even though it changes the right
variable, because it changes the value in the wrong “direc-
tion”:

int number = 10;
while(number >= 0)
{

Console.WriteLine("Hello again!");
Console.WriteLine(number);
number++;

}

The loop condition checks to see whether number is ≥ 0, and
number starts out at the value 10. But the loop body increments
number, which only moves it further away from 0 in the positive
direction. In order for this loop to work correctly, we need to
decrement number in the loop body, so that eventually it will
be less than 0.

– This loop will execute forever, even though it uses the right vari-
able in the loop body, because it multiplies the variable by 0:

int number = 0;
while (number <= 64)

185

{
Console.WriteLine(number);
number *= 2;

}

Since number was initialized to 0, number *= 2 does not actu-
ally change the value of number: 2×0 = 0. So the loop body
will never make the condition number <= 64 false.

Principles of writing a while loop
• When writing a while loop, ask yourself these questions about your

program:

1. When (under what conditions) do I want the loop to continue?
2. When (under what conditions) do I want the loop to stop?
3. How will the body of the loop bring it closer to its ending con-

dition?

• This will help you think clearly about how to write your loop condi-
tion. You should write a condition (Boolean expression) that will be
true in the circumstances described by (1), and false in the cir-
cumstances described by (2)

• Keep your answer to (3) in mind as you write the body of the loop,
and make sure the actions in your loop’s body match the condition
you wrote.

do while

Comparing while and if statements
• while and if are very similar: Both test a condition, execute a

block of code if the condition is true, and skip the block of code
if the condition is false

• There is only a difference if the condition is true: if statements only
execute the block of code once if the condition is true, but while
statements may execute the block of code multiple times if the con-
dition is true

• Compare these snippets of code:

if(number < 3)
{

Console.WriteLine("Hello!");
Console.WriteLine(number);
number++;

186

}
Console.WriteLine("Done");

and

while(number < 3)
{

Console.WriteLine("Hello!");
Console.WriteLine(number);
number++;

}
Console.WriteLine("Done");

• If number is 4, then both will do the same thing: skip the block of
code and display “Done”.

• If number is 2, both will also do the same thing: Display “Hello!” and
“2”, then increment number to 3 and print “Done”.

• If number is 1, there is a difference: The if statement will only display
“Hello!” once, but the while statement will display “Hello! 2” and
“Hello! 3” before displaying “Done”

Code duplication in while loops
• Since the while loop evaluates the condition before executing the

code in the body (like an if statement), you sometimes end up
duplicating code

• For example, consider an input-validation loop like the one we
wrote for Item prices:

Console.WriteLine("Enter the item's price.");
decimal price = decimal.Parse(Console.ReadLine());
while(price < 0)
{

Console.WriteLine("Invalid price. Please enter a non-
negative price.");

price = decimal.Parse(Console.ReadLine());
}
Item myItem = new Item(desc, price);

• Before the while loop, we wrote two lines of code to prompt the
user for input, read the user’s input, convert it to decimal, and store
it in price

• In the body of the while loop, we also wrote two lines of code to
prompt the user for input, read the user’s input, convert it to deci-
mal, and store it in price

187

• The code before the while loop is necessary to give pricean initial
value, so that we can check it for validity in the while statement

• It would be nice if we could tell the while loop to execute the body
first, and then check the condition

Introduction to do-while
• The do-while loop executes the loop body before evaluating the

condition

• Otherwise works the same as a while loop: If the condition is true,
execute the loop body again; if the condition is false, stop the loop

• This can reduce repeated code, since the loop body is executed
at least once

• Example:

decimal price;
do
{

Console.WriteLine("Please enter a non-negative price.");
price = decimal.Parse(Console.ReadLine());

} while(price < 0);
Item myItem = new Item(desc, price);

• The keyword do starts the code block for the loop body, but it does
not have a condition, so the computer simply starts executing the
body

• In the loop body, we prompt the user for input, read and parse the
input, and store it in price

• The condition price < 0 is evaluated at the end of the loop body,
so price has its initial value by the time the condition is evaluated

• If the user entered a valid price, and the condition is false, execution
simply proceeds to the next line

• If the user entered a negative price (the condition is true), the com-
puter returns to the beginning of the code block and executes the
loop body again

• This has the same effect as the while loop: the user is prompted
repeatedly until he/she enters a valid price, and the program can
only reach the line Item myItem = new Item(desc, price)
when price < 0 is false

• Note that the variable price must be declared before the do-
while loop so that it is in scope after the loop. It would not be

188

valid to declare price inside the body of the loop (e.g. on the line
with decimal.Parse) because then its scope would be limited to
inside that code block.

Formal syntax and details of do-while
• A do-while loop is written like this:

do
{

<statements>
} while(<condition>);

• The do keyword does nothing, but it is required to indicate the start
of the loop. You cannot just write a { by itself.

– Unlike a while loop, a semicolon is required after while(<condition>)

– It’s a convention to write the while keyword on the same line
as the closing }, rather than on its own line as in a while loop

– When the computer encounters a do-while loop, it first exe-
cutes the body (code block), then evaluates the condition

– If the condition is true, the computer jumps back to the do key-
word and executes the loop body again

– If the condition is false, execution continues to the next line af-
ter teh while keyword

– If the loop body is only a single statement, you can omit the
curly braces, but not the semicolon:

do
<statement>
while(<condition>);

do-while loops with multiple conditions
• We can combine both types of user-input validation in one loop:

Ensuring the user entered a number (not some other string), and
ensuring the number is valid. This is easier to do with a do-while
loop:

decimal price;
bool parseSuccess;
do
{

Console.WriteLine("Please enter a price (must be non-
negative).");

189

parseSuccess = decimal.TryParse(Console.ReadLine(), out price);
} while(!parseSuccess || price < 0);
Item myItem = new Item(desc, price);

• There are two parts to the loop condition: (1) it should be true if
the user did not enter a number, and (2) it should be true if the user
entered a negative number.

• We combine these two conditions with || because either one, by
itself, represents invalid input. Even if the user entered a valid num-
ber (which means !parseSuccess is false), the loop should not stop
unless price < 0 is also false.

• Note that both variables must be declared before the loop begins,
so that they are in scope both inside and outside the loop body

Input Validation

Valid and invalid data
• Depending on the purpose of your program, each variable might

have a limited range of values that are “valid” or “good,” even if
the data type can hold more

• For example, a decimal variable that holds a price (in dollars)
should have a positive value, even though it is legal to store
negative numbers in a decimal

• Consider the Item class, which represents an item sold in a store. It
has a price attribute that should only store positive values:

!include code/snippets/item.cs

• When you write a program that constructs an Item from literal val-
ues, you (the programmer) can make sure you only use positive
prices. However, if you construct an Item based on input provided
by the user, you cannot be certain that the user will follow directions
and enter a valid price:

Console.WriteLine("Enter the item's description");
string desc = Console.ReadLine();
Console.WriteLine("Enter the item's price (must be positive)");
decimal price = decimal.Parse(Console.ReadLine());
Item myItem = new Item(desc, price);

In this code, if the user enters a negative number, the myItem object will
have a negative price, even though that does not make sense.

• One way to guard against “bad” user input values is to use an if
statement or a conditional operator, as we saw in the previous lec-

190

ture (Switch and Conditional), to provide a default value if the user’s
input is invalid. In our example with Item, we could add a condi-
tional operator to check whether price is negative before provid-
ing it to the Item constructor:

decimal price = decimal.Parse(Console.ReadLine());
Item myItem = new Item(desc, (price >= 0) ? price : 0);

In this code, the second argument to the Item constructor is the result of
the conditional operator, which will be 0 if price is negative.

• You can also put the conditional operator inside the constructor, to
ensure that an Item with an invalid price can never be created. If
we wrote this constructor inside the Item class:

public Item(string initDesc, decimal initPrice)
{

description = initDesc;
price = (initPrice >= 0) ? initPrice : 0;

}

then the instantiation new Item(desc, price) would never be able to
create an object with a negative price. If the user provides an invalid
price, the constructor will ignore their value and initialize the price in-
stance variable to 0 instead.

Ensuring data is valid with a loop
• Another way to protect your program from “bad” user input is to

check whether the data is valid as soon as the user enters it, and
prompt him/her to re-enter the data if it is not valid

• A while loop is the perfect fit for this approach: you can write a
loop condition that is true when the user’s input is invalid, and ask
the user for input in the body of the loop. This means your program
will repeatedly ask the user for input until he/she enters valid data.

• This code uses a while loop to ensure the user enters a non-
negative price:

Console.WriteLine("Enter the item's price.");
decimal price = decimal.Parse(Console.ReadLine());
while(price < 0)
{

Console.WriteLine("Invalid price. Please enter a non-
negative price.");

price = decimal.Parse(Console.ReadLine());
}
Item myItem = new Item(desc, price);

191

• The condition for the while loop is price < 0, which is true when
the user’s input is invalid

• If the user enters a valid price the first time, the loop will not execute
at all – remember that a while loop will skip the code block if the
condition is false

• Inside the loop’s body, we ask the user for input again, and assign
the result of decimal.Parse to the same price variable we use in
the loop condition. This is what ensures that the loop will end: the
variable in the condition gets changed in the body.

• If the user still enters a negative price, the loop condition will be true,
and the body will execute again (prompting them to try again)

• If the user enters a valid price, the loop condition will be false, so
the program will proceed to the next line and instantiate the Item

• Note that the only way for the program to “escape” from the
while loop is for the user to enter a valid price. This means that
new Item(desc, price) is guaranteed to create an Item with
a non-negative price, even if we did not write the constructor
that checks whether initPrice >= 0. On the next line of code
after the end of a while loop, you can be certain that the loop’s
condition is false, otherwise execution would not have reached
that point.

Ensuring the user enters a number with TryParse
• Another way that user input might be invalid: When asked for a

number, the user could enter something that is not a number

• The Parse methods we have been using assume that the string
they are given (in the argument) is a valid number, and produce a
run-time error if it is not

• For example, this program will crash if the user enters “hello” instead
of a number:

Console.WriteLine("Guess a number"):
int guess = int.Parse(Console.ReadLine());
if(guess == favoriteNumber)
{

Console.WriteLine("That's my favorite number!");
}

• Each built-in data type has a TryParse method that will attempt to
convert a string to a number, but will not crash (produce a run-
time error) if the conversion fails. Instead, TryParse indicates failure
by returning the Boolean value false

• The TryParse method is used like this:

192

string userInput = Console.ReadLine();
int intVar;
bool success = int.TryParse(userInput, out intVar);

• The first parameter is a string to be parsed (userInput)

• The second parameter is an out parameter, and it is the name of
a variable that will be assigned the result of the conversion. The
keyword out indicates that a method parameter is used for output
rather than input, and so the variable you use for that argument will
be changed by the method.

• The return type of TryParse is bool, not int, and the value re-
turned indicates whether the input string was successfully parsed

• If the string userInput contains an integer, TryParse will assign
that integer value to intVar and return true (which gets assigned
to success)

• If the string userInput does not contain an integer, TryParse will
assign 0 to intVar and return false (which gets assigned to suc-
cess)

• Either way, the program will not crash, and intVar will be assigned
a new value

• The other data types have TryParse methods that are used the
same way. The code will follow this general format:

bool success = <numeric datatype>.TryParse(<string to convert>, out <numeric variable to store result>)

Note that the variable you use in the out parameter must be the same
type as the one whose TryParse method is being called. If you write
decimal.TryParse, the out parameter must be a decimal variable.

• A more complete example of using TryParse:

Console.WriteLine("Please enter an integer");
string userInput = Console.ReadLine();
int intVar;
bool success = int.TryParse(userInput, out intVar);
if(success)
{

Console.WriteLine($"The value entered was an integer: {intVar}");
}
else
{

Console.WriteLine($"\"{userInput}\" was not an integer");
}
Console.WriteLine(intVar);

193

• The TryParse method will attempt to convert the user’s input to an
int and store the result in intVar

• If the user entered an integer, success will be true, and the pro-
gram will display “The value entered was an integer:” followed by
the user’s value

• If the user entered some other string, success will be false, and
the program will display a message indicating that it was not an
integer

• Either way, intVar will be assigned a value, so it is safe to write
Console.WriteLine(intVar). This will display the user’s input if
the user entered an integer, or “0” if the user did not enter an inte-
ger.

• Just like with Parse, you can use Console.ReadLine() itself as the
first argument rather than a string variable. Also, you can declare
the output variable within the out parameter, instead of on a previ-
ous line. So we can read user input, declare an int variable, and
attempt to parse the user’s input all on one line:

bool success = int.TryParse(Console.ReadLine(), out int intVar);

• You can use the return value of TryParse in a while loop to keep
prompting the user until they enter valid input:

Console.WriteLine("Please enter an integer");
bool success = int.TryParse(Console.ReadLine(), out int number);
while(!success)
{

Console.WriteLine("That was not an integer, please try again.");
success = int.TryParse(Console.ReadLine(), out number);

}

• The loop condition should be true when the user’s input is invalid,
so we use the negation operator ! to write a condition that is true
when success is false

• Each time the loop body executes, both success and number are
assigned new values by TryParse

The foreach Loop

• When writing a for loop that accesses each element of an array
once, you will end up writing code like this:

for(int i = 0; i < myArray.Length; i++)
{

194

<do something with myArray[i]>;
}

• In some cases, this code has unnecessary repetition: If you are not
using the counter i for anything other than an array index, you
still need to declare it, increment it, and write the condition with
myArray.Length

• The foreach loop is a shortcut that allows you to get rid of the
counter variable and the loop condition. It has this syntax:

foreach(<type> <variableName> in <arrayName>)
{

<do something with variable>
}

– The loop will repeat exactly as many times as there are ele-
ments in the array

– On each iteration of the loop, the variable will be assigned the
next value from the array, in order

– The variable must be the same type as the array

• For example, this loop accesses each element of homeworkGrades
and computes their sum:

int sum = 0;
foreach(int grade in homeworkGrades)
{

sum += grade;
}

– The variable grade is declared with type int since homework-
Grades is an array of int

– grade has a scope limited to the body of the loop, just like the
counter variable i

– In successive iterations of the loop grade will have the value
homeworkGrades[0], then homeworkGrades[1], and so on,
through homeworkGrades[homeworkGrades.Length - 1]

• A foreach loop is read-only with respect to the array: The loop’s
variable cannot be used to change any elements of the array. This
code will result in an error:

foreach(int grade in homeworkGrades)
{

grade = int.Parse(Console.ReadLine());
}

195

For Loops

Counter-controlled loops
• Previously, when we learned about loop vocabulary, we looked at

counter-controlled while loops

• Although counter-controlled loops can perform many different
kinds of actions in the body of the loop, they all use very similar
code for managing the counter variable

• Two examples of counter-controlled while loops:

int i = 0;
while(i < 10)
{

Console.WriteLine($"{i}");
i++;

}
Console.WriteLine("Done");

int num = 1, total = 0;
while(num <= 25)
{

total += num;
num++;

}
Console.WriteLine($"The sum is {total}");

Notice that in both cases, we’ve written the same three pieces of
code:

– Initialize a counter variable (i or num) before the loop starts
– Write a loop condition that will become false when the counter

reaches a certain value (i < 10 or num <= 25)
– Increment the counter variable at the end of each loop itera-

tion, as the last line of the body

for loop example and syntax
• This for loop does the same thing as the first of the two while loops

above:

for(int i = 0; i < 10; i++)
{

Console.WriteLine($"{i}");
}
Console.WriteLine("Done");

196

– The for statement actually contains 3 statements in 1 line; note
that they are separated by semicolons

– The code to initialize the counter variable has moved inside the
for statement, and appears first

– Next is the loop condition, i < 10
– The third statement is the increment operation, i++, which no

longer needs to be written at the end of the loop body

• In general, for loops have this syntax:

for(<initialization>; <condition>; <update>)
{

<statements>
}

– The initialization statement is executed once, when the pro-
gram first reaches the loop. This is where you declare and ini-
tialize the counter variable.

– The condition statement works exactly the same as a while
loop’s condition statement: Before executing the loop’s body,
the computer checks the condition, and skips the body (end-
ing the loop) if it is false.

– The update statement is code that will be executed each time
the loop’s body ends, before checking the condition again.
You can imagine that it gets inserted right before the closing
} of the loop body. This is where you increment the counter
variable.

• Examining the example in detail

– When the computer executes our example for loop, it first cre-
ates the variable i and initializes it to 0

– Then it evaluates the condition i < 10, which is true, so it ex-
ecutes the loop’s body. The computer displays “0” in the con-
sole.

– At the end of the code block for the loop’s body, the computer
executes the update code, i++, and changes the value of i
to 1.

– Then it returns to the beginning of the loop and evaluates the
condition again. Since it is still true, it executes the loop body
again.

– This process repeats several more times. On the last iteration,
i is equal to 9. The computer displays “9” on the screen, then
increments i to 10 at the end of the loop body.

– The computer returns to the for statement and evaluates the
condition, but i < 10 is false, so it skips the loop body and
proceeds to the next line of code. It displays “Done” in the
console.

197

Limitations and Pitfalls of Using for Loops
Scope of the for loop’s variable

• When you declare a counter variable in the for statement, its
scope is limited to inside the loop

• Just like method parameters, it is as if the variable declaration hap-
pened just inside the opening {, so it can only be accessed inside
that code block

• This means you cannot use a counter variable after the end of the
loop. This code will produce a compile error:

int total = 0;
for(int count = 0; count < 10; count++)
{

total += count;
}
Console.WriteLine($"The average is {(double) total / count}");

• If you want to use the counter variable after the end of the loop,
you must declare it before the loop

• This means your loop’s initialization statement will need to assign the
variable its starting value, but not declare it

• This code works correctly, since count is still in scope after the end
of the loop:

int total = 0;
int count;
for(count = 0; count < 10; count++)
{

total += count;
}
Console.WriteLine($"The average is {(double) total / count}");

Accidentally re-declaring a variable

• If your for loop declares a new variable in its initialization statement,
it cannot have the same name as a variable already in scope

• If you want your counter variable to still be in scope after the end
of the loop, you cannot also declare it in the for loop. This is why
we had to write for(count = 0... instead of for(int count =
0... in the previous example: the name count was already being
used.

198

• Since counter variables often use short, common names (like i or
count), it is more likely that you’ll accidentally re-use one that’s al-
ready in scope

• For example, you might have a program with many for loops, and
in one of them you decide to declare the counter variable outside
the loop because you need to use it after the end of the loop. This
can cause an error in a different for loop much later in the pro-
gram:

int total = 0;
int i;
for(i = 0; i < 10; i++)
{

total += i;
}
Console.WriteLine($"The average is {(double) total / i}");
// Many more lines of code
// ...
// Some time later:
for(int i = 0; i < 10; i++)
{

Console.WriteLine($"{i}");
}

The compiler will produce an error on the second for loop, be-
cause the name “i” is already being used.

• On the other hand, if all of your for loops declare their variables in-
side the for statement, it is perfectly fine to reuse the same variable
name. This code does not produce any errors:

int total = 0;
for(int i = 0; i < 10; i++)
{

total += i;
}
Console.WriteLine($"The total is {total}");
// Some time later:
for(int i = 0; i < 10; i++)
{

Console.WriteLine($"{i}");
}

Accidentally double-incrementing the counter

• Now that you know about for loops, you may want to convert
some of your counter-controlled while loops to for loops

199

• Remember that in a while loop the counter must be incremented
in the loop body, but in a for loop the increment is part of the loop’s
header

• If you just convert the header of the loop and leave the body the
same, you will end up incrementing the counter twice per iteration.
For example, if you convert this while loop:

int i = 0;
while(i < 10)
{

Console.WriteLine($"{i}");
i++;

}
Console.WriteLine("Done");

to this for loop:

for(int i = 0; i < 10; i++)
{

Console.WriteLine($"{i}");
i++;

}
Console.WriteLine("Done");

it will not work correctly, because i will be incremented by both the
loop body and the loop’s update statement. The loop will seem to
“skip” every other value of i.

More Ways to use for Loops
Complex condition statements

• The condition in a for loop can be any expression that results in a
bool value

• If the condition compares the counter to a variable, the number of
iterations depends on the variable. If the variable comes from user
input, the loop is also user-controlled, like in this example:

Console.WriteLine("Enter a positive number.");
int numTimes = int.Parse(Console.ReadLine());
for(int c = 0; c < numTimes; c++)
{

Console.WriteLine("**********");
}

• The condition can compare the counter to the result of a method
call. In this case, the method will get called on every iteration of the

200

loop, since the condition is re-evaluated every time the loop returns
to the beginning. For example, in this loop:

for(int i = 1; i <= (int) myItem.GetPrice(); i++)
{

Console.WriteLine($"${i}");
}

the GetPrice() method of myItem will be called every time the
condition is evaluated.

Complex update statements

• The update statement can be anything, not just an increment op-
eration

• For example, you can write a loop that only processes the even
numbers like this:

for(int i = 0; i < 19; i += 2)
{

Console.WriteLine($"{i}");
}

• You can write a loop that decreases the counter variable on every
iteration, like this:

for(int t = 10; t > 0; t--)
{

Console.Write($"{t}...");
}
Console.WriteLine("Liftoff!");

Complex loop bodies

• The loop body can contain more complex statements, including
other decision structures

• if statements can be nested inside for loops, and they will be eval-
uated again on every iteration

• For example, in this program:

for(int i = 0; i < 8; i++)
{

if(i % 2 == 0)
{

Console.WriteLine("It's my turn");
}
else

201

{
Console.WriteLine("It's your turn");

}
Console.WriteLine("Switching players...");

}

On even-numbered iterations, the computer will display “It’s my
turn” followed by “Switching players…”, and on odd-numbered iter-
ations the computer will display “It’s your turn” followed by “Switch-
ing players…”

• for loops can contain other for loops. This means the “inner” loop
will execute all of its iterations each time the “outer” loop executes
one iteration.

• For example, this program prints a multiplication table:

for(int r = 0; r < 11; r++)
{

for(int c = 0; c < 11; c++)
{

Console.Write($"{r} x {c} = {r * c} \t");
}
Console.Write("\n");

}

The outer loop prints the rows of the table, while the inner loop
prints the columns. On a single iteration of the outer for loop
(i.e. when r = 2), the inner for loop executes its body 11 times,
using values of c from 0 to 10. Then the computer executes the
Console.Write("\n") to print a newline before the next “row”
iteration.

Combining for and while loops

• while loops are good for sentinel-controlled loops or user-input val-
idation, and for loops are good for counter-controlled loops

• This program asks the user to enter a number, then uses a for loop
to print that number of asterisks on a single line:

string userInput;
do
{

Console.WriteLine("Enter a positive number, or \"Q\" to stop");
userInput = Console.ReadLine();
int inputNum;
int.TryParse(userInput, out inputNum);
if(inputNum > 0)

202

{
for(int c = 0; c < inputNum; c++)
{

Console.Write("*");
}
Console.WriteLine();

}
} while(userInput != "Q");

– The sentinel value “Q” is used to end the program, so the outer
while loop repeats until the user enters this value

– Once the user enters a number, that number is used in
the condition for a for loop that prints asterisks using Con-
sole.Write(). After the for loop ends, we use Con-
sole.WriteLine() with no argument to end the line (print a
newline).

– Since the user could enter either a letter or a number, we need
to use TryParse to convert the user’s input to a number

– If TryParse fails (because the user entered a non-number),
inputNum will be assigned the value 0. This is also an invalid
value for the loop counter, so we do not need to check
whether TryParse returned true or false. Instead, we simply
check whether inputNum is valid (greater than 0) before
executing the for loop, and skip the for loop entirely if
inputNum is negative or 0.

Loop Vocabulary

Variables and values can have multiple roles, but it is useful to mention
three different roles in the context of loops:

Counter Variable that is incremented every time a given event occurs.

int i = 0; // i is a counter
while (i < 10){

Console.WriteLine($"{i}");
i++;

}

Sentinel Value A special value that signals that the loop needs to end.

Console.WriteLine("Give me a string.");
string ans = Console.ReadLine();
while (ans != "Quit") // The sentinel value is "Quit".
{

203

Console.WriteLine("Hi!");
Console.WriteLine("Enter \"Quit\" to quit, or anything else to continue.");
ans = Console.ReadLine();

}

Accumulator Variable used to keep the total of several values.

int i = 0, total = 0;
while (i < 10){

total += i; // total is the accumulator.
i++;

}

Console.WriteLine($"The sum from 0 to {i} is {total}.");

We can have an accumulator and a sentinel value at the same time:

Console.WriteLine("Enter a number to sum, or \"Done\" to stop and print the total.");
string enter = Console.ReadLine();
int sum = 0;
while (enter != "Done")
{

sum += int.Parse(enter);
Console.WriteLine("Enter a number to sum, or \"Done\" to stop and print the total.");
enter = Console.ReadLine();

}
Console.WriteLine($"Your total is {sum}.");

You can have counter, accumulator and sentinel values at the same
time:

int a = 0;
int sum = 0;
int counter = 0;
Console.WriteLine("Enter an integer, or N to quit.");
string entered = Console.ReadLine();
while (entered != "N") // Sentinel value
{

a = int.Parse(entered);
sum += a; // Accumulator
Console.WriteLine("Enter an integer, or N to quit.");
entered = Console.ReadLine();
counter++; // counter

}
Console.WriteLine($"The average is {sum / (double)counter}");

We can distinguish between three “flavors” of loops (that are not mutu-
ally exclusive):

204

Sentinel controlled loop The exit condition tests if a variable has (or is dif-
ferent from) a specific value.

User controlled loop The number of iterations depends on the user.

Count controlled loop The number of iterations depends on a counter.

Note that a user-controlled loop can be sentinel-controlled (that is the
example we just saw), but also count-controlled (“Give me a value, and
I will iterate a task that many times”).

Combining Classes and Decision Structures

Now that we have learned about decision structures, we can revisit
classes and methods. Decision structures can make our methods more
flexible, useful, and functional.

Using if Statements with Methods
There are several ways we can use if-elseand if-else-if statements
with methods:

• For input validation in setters and properties
• For input validation in constructors
• With Boolean parameters to change a method’s behavior
• Inside a method to evaluate instance variables

Setters with Input Validation

• Recall that getters and setters are used to implement encap-
sulation: an object’s attributes (instance variables) can only be
changed by code in that object’s class

• For example, this Item class (which represents an item for sale in a
store) has two attributes, a price and a description. Code outside
the Item class (e.g. in the Main method) can only change these
attributes by calling SetPrice and SetDescription

!include code/snippets/item.cs

• Right now, it is possible to set the price to any value, including a
negative number, but a negative price does not make sense. If we
add an if statement to SetPrice, we can check that the new value
is a valid price before changing the instance variable:

public void SetPrice(decimal p)
{

if(p >= 0)

205

{
price = p;

}
else
{

price = 0;
}

}

– If the parameter p is less than 0, we do not assign it to price;
instead we set price to the nearest valid value, which is 0.

– Since code outside the Item class cannot access price di-
rectly, this means it is now impossible to give an item a negative
price: If your code calls myItem.SetPrice(-90m), myItem’s
price will be 0, not -90.

• Alternatively, we could write a setter that simply ignores invalid val-
ues, instead of changing the instance variable to the “nearest valid”
value

• For example, in the Rectangle class, the length and width at-
tributes must also be non-negative. We could write a setter for
width like this:

public void SetWidth(int newWidth)
{

if(newWidth >= 0)
{

width = newWidth
}

}

– This means if myRectangle has a width of 6, and your code
calls myRectangle.SetWidth(-18), then myRectangle will
still have a width of 6.

• A setter with input validation is a good example of where a condi-
tional operator can be useful. We can write the SetPrice method
with one line of code using a conditional operator:

public void SetPrice(decimal p)
{

price = (p >= 0) ? p : 0;
}

The instance variable price is assigned to the result of the condi-
tional operator, which is either p, if p is a valid price, or 0, if p is not
a valid price.

• If you have a class that uses properties instead of getters and setters,

206

the same kind of validation can be added to the set component
of a property

– For example, the “price” attribute could be implemented with
a property like this:

public decimal Price
{

get
{

return price;
}
set
{

price = value;
}

}

– We can add an if statement or a conditional operator to the
set accessor to ensure the price is not set to a negative num-
ber:

public decimal Price
{

get
{

return price;
}
set
{

price = (value >= 0) ? value : 0;
}

}

• If a class’s attributes have a more limited range of valid values, we
might need to write a more complex condition in the setter. For
example, consider the Time class:

class Time
{

private int hours;
private int minutes;
private int seconds;

}

• In a Time object, hours can be any non-negative number, but min-
utes and seconds must be between 0 and 59 for it to represent a
valid time interval

• The SetMinutes method can be written as follows:

207

public void SetMinutes(int newMinutes)
{

if(newMinutes >= 0 && newMinutes < 60)
{

minutes = newMinutes;
}
else if(newMinutes >= 60)
{

minutes = 59;
}
else
{

minutes = 0;
}

}

– If the parameter newMinutes is between 0 and 59 (both
greater than or equal to 0 and less than 60), it is valid and can
be assigned to minutes

– If newMinutes is 60 or greater, we set minutes to the largest
possible value, which is 59

– If newMinutes is less than 0, we set minutes to the smallest
possible value, which is 0

– Note that we need an if-else-if statement because there are
two different ways that newMinutes can be invalid (too large
or too small) and we need to distinguish between them. When
the condition newMinutes >= 0 && newMinutes < 60 is
false, it could either be because newMinutes is less than 0 or
because newMinutes is greater than 59. The else if clause
tests which of these possibilities is true.

Constructors with Input Validation

• A constructor’s job is to initialize the object’s instance variables, so
it is very similar to a “setter” for all the instance variables at once

• If the constructor uses parameters to initialize the instance variables,
it can use if statements to ensure the instance variables are not
initialized to “bad” values

• Returning to the Item class, this is how we could write a 2-argument
constructor that initializes the price to 0 if the parameter initPrice
is not a valid price:

public Item(string initDesc, decimal initPrice)
{

description = initDesc;

208

price = (initPrice >= 0) ? initPrice : 0;
}

With both this constructor and the SetPrice method we wrote ear-
lier, we can now guarantee that it is impossible for an Item object to
have a negative price. This will make it easier to write a large pro-
gram that uses many Item objects without introducing bugs: the
program cannot accidentally reduce an item’s price below 0, and
it can add up the prices of all the items and be sure to get the cor-
rect answer.

• Recall the ClassRoom class from an earlier lecture, which has a
room number as one of its attributes. If we know that no classroom
building has more than 3 floors, then the room number must be be-
tween 100 and 399. The constructor for ClassRoom could check
that the room number is valid using an if-else-if statement, as fol-
lows:

public ClassRoom(string buildingParam, int numberParam)
{

building = buildingParam;
if(numberParam >= 400)
{

number = 399;
}
else if(numberParam < 100)
{

number = 100;
}
else
{

number = numberParam;
}

}

– Here, we have used similar logic to the SetMinutes method of
the Time class, but with the conditions tested in the opposite
order

– First, we check if numberParam is too large (greater than 399),
and if so, initialize number to 399

– Then we check if numberParam is too small (less than 100), and
if so, initialize number to 100

– If both of these conditions are false, it means numberParam is
a valid room number, so we can initialize number to number-
Param

• The Timeclass also needs a constructor that checks if its parameters
are within a valid range, since both minutes and seconds must be

209

between 0 and 59

• However, with this class we can be “smarter” about the way we
handle values that are too large. If a user attempts to construct a
Time object with a value of 0 hours and 75 minutes, the constructor
could “correct” this to 1 hour and 15 minutes and initialize the Time
object with these equivalent values. In other words, this code:

Time classTime = new Time(0, 75, 0);
Console.WriteLine($"{classTime.GetHours()} hours, {classTime.GetMinutes()} minutes");

should produce the output “1 hours, 15 minutes”, not “0 hours, 59
minutes”

• Here’s a first attempt at writing the Time constructor:

public Time(int hourParam, int minuteParam, int secondParam)
{

hours = (hourParam >= 0) ? hourParam : 0;
if(minuteParam >= 60)
{

minutes = minuteParam % 60;
hours += minuteParam / 60;

}
else if(minuteParam < 0)
{

minutes = 0;
}
else
{

minutes = minuteParam;
}
if(secondParam >= 60)
{

seconds = secondParam % 60;
minutes += secondParam / 60;

}
else if(secondParam < 0)
{

seconds = 0;
}
else
{

seconds = secondParam;
}

}

– First, we initialize hours using hourParam, unless hourParam is
negative. There is no upper limit on the value of hours

210

– If minuteParam is 60 or greater, we perform an integer division
by 60 and add the result to hours, while using the remainder af-
ter dividing by 60 to initialize minutes. This separates the value
into a whole number of hours and a remaining, valid, number
of minutes. Since hours has already been initialized, it is impor-
tant to use += (to add to the existing value).

– Similarly, if secondParam is 60 or greater, we divide it into a
whole number of minutes and a remaining number of seconds,
and add the number of minutes to minutes

– With all three parameters, any negative value is replaced with
0

• This constructor has an error, however: If minuteParam is 59 and
secondParam is 60 or greater, minutes will be initialized to 59, but
then the second if-else-if statement will increase minutes to 60.
There are two ways we can fix this problem.

– One is to add a nested if statement that checks if minutes
has been increased past 59 by secondParam:

public Time(int hourParam, int minuteParam, int secondParam)
{

hours = (hourParam >= 0) ? hourParam : 0;
if(minuteParam >= 60)
{

minutes = minuteParam % 60;
hours += minuteParam / 60;

}
else if(minuteParam < 0)
{

minutes = 0;
}
else
{

minutes = minuteParam;
}
if(secondParam >= 60)
{

seconds = secondParam % 60;
minutes += secondParam / 60;
if(minutes >= 60)
{

hours += minutes / 60;
minutes = minutes % 60;

}
}
else if(secondParam < 0)

211

{
seconds = 0;

}
else
{

seconds = secondParam;
}

}

– Another is to use the AddMinutes method we have already
written to increase minutes, rather than the += operator, be-
cause this method ensures that minutes stays between 0 and
59 and increments hours if necessary:

public Time(int hourParam, int minuteParam, int secondParam)
{

hours = (hourParam >= 0) ? hourParam : 0;
if(minuteParam >= 60)
{

AddMinutes(minuteParam);
}
else if(minuteParam < 0)
{

minutes = 0;
}
else
{

minutes = minuteParam;
}
if(secondParam >= 60)
{

seconds = secondParam % 60;
AddMinutes(secondParam / 60);

}
else if(secondParam < 0)
{

seconds = 0;
}
else
{

seconds = secondParam;
}

}

Note that we can also use AddMinutes in the first if statement,
since it will perform the same integer division and remainder
operations that we originally wrote for minuteParam.

212

Boolean Parameters

• When writing a method, we might want a single method to take one
of two different actions depending on some condition, instead of
doing the same thing every time. In this case we can declare the
method with a bool parameter, whose value represents whether
the method should (true) or should not (false) have a certain be-
havior.

• For example, in the Room class we wrote in lab, we wrote two
separate methods to compute the area of the room: Com-
puteArea() would compute and return the area in meters, while
ComputeAreaFeet() would compute and return the area in feet.
Instead, we could write a single method that computes the area
in either feet or meters depending on a parameter:

public double ComputeArea(bool useMeters)
{

if(useMeters)
return length * width;

else
return GetLengthFeet() * GetWidthFeet();

}

– If the useMeters parameter is true, this method acts like the
original ComputeArea method and returns the area in meters

– If the useMeters parameter is false, this method acts like
ComputeAreaFeet and returns the area in feet

– We can use the method like this:

Console.WriteLine("Compute area in feet (f) or meters (m)?");
char userChoice = char.Parse(Console.ReadLine());
if(userChoice == 'f')
{

Console.WriteLine($"Area: {myRoom.ComputeArea(false)}");
}
else if(userChoice == 'm')
{

Console.WriteLine($"Area: {myRoom.ComputeArea(true)}");
}
else
{

Console.WriteLine("Invalid choice");
}

Regardless of whether the user requests feet or meters,
we can call the same method. Instead of calling Com-

213

puteAreaFeet() when the user requests the area in feet, we
call ComputeArea(false)

– Note that the bool argument to ComputeArea can be any ex-
pression that results in a Boolean value, not just true or false. This
means that we can actually eliminate the if statement from
the previous example:

Console.WriteLine("Compute area in feet (f) or meters (m)?");
char userChoice = char.Parse(Console.ReadLine());
bool wantsMeters = userChoice == 'm';
Console.WriteLine($"Area: {myRoom.ComputeArea(wantsMeters)}");

The expression userChoice == 'm' is true if the user has re-
quested to see the area in meters. Instead of testing this ex-
pression in an if statement, we can simply use it as the argu-
ment to ComputeArea – if the expression is true, we should call
ComputeArea(true) to get the area in meters.

• Constructors are also methods, and we can add Boolean param-
eters to constructors as well, if we want to change their behavior.
Remember that the parameters of a constructor do not need to
correspond directly to instance variables that the constructor will
initialize.

• For example, in the lab we wrote two different constructors for the
Room class: one that would interpret its parameters as meters, and
one that would interpret its parameters as feet. Since parameter
names (“meters” or “feet”) are not part of a method’s signature, we
ensured the two constructors had different signatures by omitting
the “name” parameter from the feet constructor.

– Meters constructor:

public Room(double lengthMeters, double widthMeters, string initName)

– Feet constructor:

public Room(double lengthFeet, double widthFeet)

– The problem with this approach is that the feet constructor can-
not initialize the name of the room; if we gave it a string pa-
rameter for the room name, it would have the same signature
as the meters constructor.

– Using a Boolean parameter, we can write a single constructor
that accepts either meters or feet, and is equally capable of
initializing the name attribute in both cases:

public Room(double lengthP, double widthP, string nameP, bool meters)
{

if(meters)

214

{
length = lengthP;
width = widthP;

}
else
{

length = lengthP * 0.3048;
width = widthP * 0.3048;

}
name = nameP;

}

– If the parameter meters is true, this constructor interprets the
length and width parameters as meters (acting like the previ-
ous “meters constructor”), but if meters is false, this constructor
interprets the length and width parameters as feet (acting like
the previous “feet constructor”).

Ordinary Methods Using if

• Besides enhancing our “setter” methods, we can also use if state-
ments to write other methods that change their behavior based on
conditions

• For example, we could add a GetFloormethod to ClassRoom that
returns a string describing which floor the classroom is on. This looks
very similar to the example if-else-if statement we wrote in a
previous lecture, but inside the ClassRoom class rather than in a
Main method:

public string GetFloor()
{

if(number >= 300)
{

return "Third floor";
}
else if(number >= 200)
{

return "Second floor";
}
else if(number >= 100)
{

return "First floor";
}
else
{

return "Invalid room";

215

}
}

– Now we can replace the if-else-if statement in the Main
method with a single statement: Console.WriteLine(myRoom.GetFloor());

• We can add a MakeCube method to the Prism class that trans-
forms the prism into a cube by “shrinking” two of its three dimen-
sions, so that all three are equal to the smallest dimension. For ex-
ample, if myPrism is a prism with length 4, width 3, and depth 6,
myPrism.MakeCube() should change its length and depth to 3.

public void MakeCube()
{

if(length <= width && length <= depth)
{

width = length;
depth = length;

}
else if(width <= length && width <= depth)
{

length = width;
depth = width;

}
else
{

length = depth;
width = depth;

}
}

– This if-else-if statement first checks to see if length is the
smallest dimension, and if so, sets the other two dimensions to
be equal to length

– Similarly, if width is the smallest dimension, it sets both other
dimensions to width

– No condition is necessary in the else clause, because one of
the three dimensions must be the smallest. If the first two con-
ditions are false, depth must be the smallest dimension.

– Note that we need to use <= in both comparisons, not <: if
length is equal to width, but smaller than depth, we should
still set all dimensions to be equal to length

Boolean Instance Variables

• A class might need a bool instance variable if it has an attribute
that can only be in one of two states, e.g. on/off, feet/meters, on

216

sale/not on sale

• For example, we can add an instance variable called “taxable” to
the Item class to indicate whether or not the item should have sales
tax added to its price at checkout. The UML diagram for Item with
this instance variable would look like this:

!include uml/Item.md

– Note that the “getter” for a Boolean variable is conventionally
named with a word like “Is” or “Has” rather than “Get”

– We will add a constant named SALES_TAX to the Item class to
store the sales tax rate that should be applied if the item is tax-
able. The sales tax rate is not likely to change during the pro-
gram’s execution, but it is better to store it in a named variable
instead of writing the same literal value (e.g. 0.08m) every time
we want to compute a total price with tax.

• The instance variables and constructor for Item now look like this:

class Item
{

private string description;
private decimal price;
private bool taxable
public const decimal SALES_TAX = 0.08m;

public Item(string initDesc, decimal initPrice, bool isTaxable)
{

description = initDesc;
price = (initPrice >= 0) ? initPrice : 0;
taxable = isTaxable;

}
...
}

• We can use this instance variable in a Main method to compute
the final price of an Item based on whether or not it is taxable:

Item myItem = new Item("Blue Polo Shirt", 19.99m, true);
decimal totalPrice = myItem.GetPrice();
if(myItem.isTaxable())
{

totalPrice = totalPrice + (totalPrice * Item.SALES_TAX);
}
Console.WriteLine($"Final price: {totalPrice:C}");

• However, if we were writing a program that handled large numbers
of items, we might find it tedious to write this if statement every time.
To make it easier to compute the “real” (with tax) price of an item,

217

we could instead modify the GetPrice() method to automatically
include sales tax if applicable:

public decimal GetPrice()
{

if(taxable)
return price + (price * SALES_TAX);

else
return price;

}

Now, myItem.GetPrice() will return the price with tax if the item is
taxable, so our Main method can simply use myItem.GetPrice()
as the total price without needing to check myItem.isTaxable().

Using while Loops with Classes
There are several ways that while loops are useful when working with
classes and methods:

• To validate input before calling a method
• Inside a method, to interact with the user
• Inside a method, to take repeated action based on the object’s

attributes
• To control program behavior based on the return value of a method

Input Validation with Objects

• As we have seen in a previous section (Loops and Input Validation),
while loops can be used with the TryParse method to repeatedly
prompt the user for input until he/she enters a valid value

• This is a useful technique to use before initializing an object’s at-
tributes with user-provided data

• For example, the length and width of a Rectangle object should
be non-negative integers. If we want to create a Rectangle with
a length and width provided by the user, we can use a while loop
for each attribute to ensure the user enters valid values before con-
structing the Rectangle.

int length, width;
bool isInt;
do
{

Console.WriteLine("Enter a positive length");
isInt = int.TryParse(Console.ReadLine(), out length);

} while(!isInt || length < 0);

218

do
{

Console.WriteLine("Enter a positive width");
isInt = int.TryParse(Console.ReadLine(), out width);

} while(!isInt || width < 0);
Rectangle myRectangle = new Rectangle(length, width);

– Each loop asks the user to enter a number, and repeats if the
user enters a non-integer (TryParse returns false) or enters a
negative number (length or width is less than 0).

– Note that we can re-use the bool variable isInt to contain
the return value of TryParse in the second loop, since it would
otherwise have no purpose or meaning after the first loop ends.

– After both loops have ended, we know that lengthand width
are sensible values to use to construct a Rectangle

• Similarly, we can use while loops to validate user input before call-
ing a non-constructor method that takes arguments, such as Rect-
angle’s Multiply method or Item’s SetPrice method

• For example, if a program has an already-initialized Item object
named myItem and wants to use SetPrice to change its price to
a user-provided value, we can use a while loop to keep prompting
the user for input until he/she enters a valid price.

bool isNumber;
decimal newPrice;
do
{

Console.WriteLine($"Enter a new price for {myItem.GetDescription()}");
isNumber = decimal.TryParse(Console.ReadLine(), out newPrice);

} while(!isNumber || newPrice < 0);
myItem.SetPrice(newPrice);

– Like with our previous example, the while loop’s condition will
be true if the user enters a non-numeric string, or a negative
value. Thus the loop will only stop when newPrice contains a
valid price provided by the user.

– Although it is “safe” to pass a negative value as the argument
to SetPrice, now that we added an if statement to Set-
Price, it can still be useful to write this while loop

– The SetPrice method will use a default value of 0 if its argu-
ment is negative, but it will not alert the user that the price they
provided is invalid or give them an opportunity to provide a
new price

• The ComputeArea method that we wrote earlier for the Room class
demonstrates another situation where it is useful to write a while
loop before calling a method

219

– Note that in the version of the code that passes the user’s input
directly to the ComputeArea method, instead of using an if-
else-if statement, there is nothing to ensure the user enters
one of the choices “f” or “m”:

Console.WriteLine("Compute area in feet (f) or meters (m)?");
char userChoice = char.Parse(Console.ReadLine());
Console.WriteLine($"Area: {myRoom.ComputeArea(userChoice == 'm')}");

– This means that if the user enters a multiple-letter string the pro-
gram will crash (char.Parse throws an exception if its input
string is larger than one character), and if the user enters a let-
ter other than “m” the program will act as if he/she entered
“f”

– Instead, we can use TryParseand a while loop to ensure that
userChoice is either “f” or “m” and nothing else

bool validChar;
char userChoice;
do
{

Console.WriteLine("Compute area in feet (f) or meters (m)?");
validChar = char.TryParse(Console.ReadLine(), out userChoice);

} while(!validChar || !(userChoice == 'f' || userChoice == 'm'));
Console.WriteLine($"Area: {myRoom.ComputeArea(userChoice == 'm')}");

– This loop will prompt the user for input again if TryParse returns
false, meaning he/she did not enter a single letter. It will also
prompt again if the user’s input was not equal to 'f' or 'm'.

– Note that we needed to use parentheses around the expres-
sion !(userChoice == 'f' || userChoice == 'm') in or-
der to apply the ! operator to the entire “OR” condition. This
represents the statement “it is not true that userChoice is equal
to ‘f’ or ‘m’.” We could also write this expression as (user-
Choice != 'f' && userChoice != 'm'), which represents
the equivalent statement “userChoice is not equal to ‘f’ and
also not equal to ‘m’.”

Using Loops Inside Methods

• A class’s methods can contain while loops if they need to exe-
cute some code repeatedly. This means that when you call such
a method, control will not return to the Main program until the loop
has stopped.

• Reading input from the user, validating it, and using it to set the
attributes of an object is a common task in the programs we have

220

been writing. If we want to do this for several objects, we might
end up writing many very similar while loops in the Main method.
Instead, we could write a method that will read and validate user
input for an object’s attribute every time it is called.

– For example, we could add a method SetLengthFromUser to
the Rectangle class:

public void SetLengthFromUser()
{

bool isInt;
do
{
Console.WriteLine("Enter a positive length");
isInt = int.TryParse(Console.ReadLine(), out length);

} while(!isInt || length < 0);
}

– This method is similar to a setter, but it has no parameters be-
cause its only input comes from the user

– The while loop is just like the one we wrote before constructing
a Rectangle in a previous example, except the outparameter
of TryParse is the instance variable length instead of a local
variable in the Main method

– TryParse will assign the user’s input to the length instance
variable when it succeeds, so by the time the loop ends, the
Rectangle’s length has been set to the user-provided value

– Assuming we wrote a similar method SetWidthFromUser()
(substituting width for length in the code), we would use
these methods in the Main method like this:

Rectangle rect1 = new Rectangle();
Rectangle rect2 = new Rectangle();
rect1.SetLengthFromUser();
rect1.SetWidthFromUser();
rect2.SetLengthFromUser();
rect2.SetWidthFromUser();

After executing this code, both rect1 and rect2 have been
initialized with length and width values the user entered.

• Methods can also contain while loops that are not related to vali-
dating input. A method might use a while loop to repeat an action
several times based on the object’s instance variables.

– For example, we could add a method to the Rectangle class
that will display the Rectangle object as a rectangle of asterisks
on the screen:

221

public void DrawInConsole()
{

int counter = 1;
while(counter <= width * length)
{

Console.Write(" * ");
if(counter % width == 0)
{

Console.WriteLine();
}
counter++;

}
}

– This while loop prints a number of asterisks equal to the area of
the rectangle. Each time it prints width of them on the same
line, it adds a line break with WriteLine().

Using Methods to Control Loops

• Methods can return Boolean values, as we showed previously in the
section on Boolean instance variables

• Other code can use the return value of an object’s method in the
loop condition of a while loop, so the loop is controlled (in part) by
the state of the object

• For example, recall the Time class, which stores hours, minutes, and
seconds in instance variables.

– In a previous example we wrote a GetTotalSeconds()
method to convert these three instance variables into a single
value:

public int GetTotalSeconds()
{

return hours * 60 * 60 + minutes * 60 + seconds;
}

– We can now write a method ComesBefore that compares two
Time objects:

public bool ComesBefore(Time otherTime)
{

return GetTotalSeconds() < otherTime.GetTotalSeconds();
}

This method will return true if the calling object (i.e. this ob-
ject) represents a smaller amount of time than the other Time

222

object passed as an argument

– Since it returns a Boolean value, we can use the ComesBefore
method to control a loop. Specifically, we can write a pro-
gram that asks the user to enter a Time value that is smaller
than a specified maximum, and use ComesBefore to validate
the user’s input.

Time maximumTime = new Time(2, 45, 0);
Time userTime;
do
{

Console.WriteLine($"Enter a time less than {maximumTime}");
int hours, minutes, seconds;
do
{

Console.Write("Enter the hours: ");
} while(!int.TryParse(Console.ReadLine(), out hours));
do
{

Console.Write("Enter the minutes: ");
} while(!int.TryParse(Console.ReadLine(), out minutes));
do
{

Console.Write("Enter the seconds: ");
} while(!int.TryParse(Console.ReadLine(), out seconds));
userTime = new Time(hours, minutes, seconds);

} while(!userTime.ComesBefore(maximumTime));
//At this point, userTime is valid Time object

– Note that there are while loops to validate each number the
user inputs for hours, minutes, and seconds, as well as an outer
while loop that validates the Time object as a whole.

– The outer loop will continue until the user enters values that
make userTime.ComesBefore(maximumTime) return true.

Examples
The Room Class

The class and its associated Main method presented in this archive323

show how you can use classes, methods, constructors and decision struc-
tures all in the same program. It also exemplifies how a method can take
an object as a parameter with InSameBuilding.

The corresponding UML diagram is:
323https:/princomp.github.io/code/projects/Room.zip

223

https:/princomp.github.io/code/projects/Room.zip

!include uml/Room.md

The Loan Class

Similarly, this class and its associated Main method show how you can
use classes, methods, constructors, decision structures, and user input
validation all in the same program. This lab324 asks you to add the user
input validation code, and you can download the following code in this
archive325.

!include code/projects/LoanCalculator/LoanCalculator/Program.cs

!include code/projects/LoanCalculator/LoanCalculator/Loan.cs

Break and continue

Conditional iteration
• Sometimes, you want to write a loop that will skip some iterations if

a certain condition is met

• For example, you may be writing a for loop that iterates through
an array of numbers, but you only want to use even numbers from
the array

• One way to accomplish this is to nest an if statement inside the
for loop that checks for the desired condition. For example:

int sum = 0;
for(int i = 0; i < myArray.Length; i++)
{

if(myArray[i] % 2 == 0)
{

Console.WriteLine(myArray[i]);
sum += myArray[i];

}
}

Since the entire body of the for loop is contained within an if statement,
the iterations where myArray[i] is odd will skip the body and do nothing.

Skipping iterations with continue
• The continue keyword provides another way to conditionally skip

an iteration of a loop
324https:/princomp.github.io/labs/ValidatingInput
325https:/princomp.github.io/code/projects/LoanCalculator.zip

224

https:/princomp.github.io/labs/ValidatingInput
https:/princomp.github.io/code/projects/LoanCalculator.zip

• When the computer encounters a continue; statement, it immedi-
ately returns to the beginning of the current loop, skipping the rest
of the loop body

• Then it executes the update statement (if the loop is a for loop)
and checks the loop condition again

• A continue; statement inside an if statement will end the current
iteration only if that condition is true

• For example, this code will skip the odd numbers in myArray and
use only the even numbers:

int sum = 0;
for(int i = 0; i < myArray.Length; i++)
{

if(myArray[i] % 2 != 0)
continue;

Console.WriteLine(myArray[i]);
sum += myArray[i];

}

If myArray[i] is odd, the computer will execute the continue statement
and immediately start the next iteration of the loop. This means that the
rest of the loop body (the other two statements) only gets executed if
myArray[i] is even.

• Using a continue statement instead of putting the entire body
within an if statement can reduce the amount of indentation in
your code, and it can sometimes make your code’s logic clearer.

Loops with multiple end conditions
• More advanced loops may have multiple conditions that affect

whether the loop should continue

• Attempting to combine all of these conditions in the loop condition
(i.e. the expression after while) can make the loop more compli-
cated

• For example, consider a loop that processes user input, which
should end either when a sentinel value is encountered or when
the input is invalid. This loop ends if the user enters a negative
number (the sentinel value) or a non-numeric string:

int sum = 0, userNum = 0;
bool success = true;
while(success && userNum >= 0)
{

sum += userNum;

225

Console.WriteLine("Enter a positive number to add it. "
+ "Enter anything else to stop.");

success = int.TryParse(Console.ReadLine(), out userNum);
}
Console.WriteLine($"The sum of your numbers is {sum}");

• The condition success && userNum >= 0 is true if the user entered
a valid number that was not negative

• In order to write this condition, we needed to declare the extra vari-
able success to keep track of the result of int.TryParse

• We cannot use the condition userNum > 0, hoping to take advan-
tage of the fact that if TryParse fails it assigns its out parameter
the value 0, because 0 is a valid input the user could give

Ending the loop with break
• The break keyword provides another way to write an additional end

condition

• When the computer encounters a break; statement, it immedi-
ately ends the loop and proceeds to the next statement after the
loop body

• This is the same break keyword we used in switch statements

• In both cases it has the same meaning: stop execution here and
skip to the end of this code block (the ending } for the switch or
the loop)

• Using a break statement inside an if-else statement, we can
rewrite the previous while loop so that the variable success is not
needed:

int sum = 0, userNum = 0;
while(userNum >= 0)
{

sum += userNum;
Console.WriteLine("Enter a positive number to add it. "
+ "Enter anything else to stop.");
if(!int.TryParse(Console.ReadLine(), out userNum))

break;
}
Console.WriteLine($"The sum of your numbers is {sum}");

• Inside the body of the loop, the return value of TryParse can be
used directly in an if statement instead of assigning it to the suc-
cess variable

226

• If TryParse fails, the break statement will end the loop, so there is
no need to add success to the while condition

• We can also use the break statement with a for loop, if there are
some cases where the loop should end before the counter reaches
its last value

• For example, imagine that our program is given an int array that a
user partially filled with numbers, and we need to find their product.
The “unused” entries at the end of the array are all 0 (the default
value of int), so the for loop needs to stop before the end of the
array if it encounters a 0. A break statement can accomplish this:

int product = 1;
for(int i = 0; i < myArray.Length; i++)
{

if(myArray[i] == 0)
break;

product *= myArray[i];
}

• If myArray[i] is 0, the loop stops before it can multiply the product
by 0

• If all of the array entries are nonzero, though, the loop continues
until i is equal to myArray.Length

• Note that in this example, we access each array element once and
do not modify them, so we could also write it with a foreach loop:

int product = 1;
foreach(int number in myArray)
{

if(number == 0)
break;

product *= number;
}

The Conditional Operator

• There are many situations where we need to assign a variable to a
different value depending on the result of a condition

• For example, the if-else-if and switch statements in the previ-
ous section were used to decide which value to assign to the vari-
able monthName

• A simpler example: Imagine your program needs to tell the user
whether a number is even or odd. You need to initialize a string

227

variable to either “Even” or “Odd” depending on whether myInt %
2 is equal to 0. We could write an if statement to do this:

string output;
if(myInt % 2 == 0)
{

output = "Even";
}
else
{

output = "Odd";
}

Assignment with the conditional operator
• If the only thing an if statement does is assign a value to a variable,

there is a much shorter way to write it

• The conditional operator ?: tests a condition, and then outputs one
of two values based on the result

• Continuing the “even or odd” example, the conditional operator is
used like this:

string output = (myInt % 2 == 0) ? "Even" : "Odd";

When this line of code is executed:

• The condition (myInt % 2 == 0) is evaluated, and the result is
either true or false

• If the condition is true, the conditional operator returns (outputs) the
value "Even" (the left side of the :)

• If the condition is false, the operator returns the value "Odd" (the
right side of the :)

• This value, either “Even” or “Odd”, is used in the initialization state-
ment for string output

• Thus, output gets assigned the value "Even" if (myInt % 2 == 0)
is true, or "Odd" if (myInt % 2 == 0) is false

• In general, the syntax for the conditional operator is:

condition ? true_expression : false_expression;

• The “condition” can be any expression that produces a bool when
evaluated, just like in an if statement

228

• true_expression and false_expression can be variables, val-
ues, or more complex expressions, but they must both produce the
same type of data when evaluated

• For example, if true_expression is myInt * 1.5, then
false_expression must also produce a double

• When the conditional operator is evaluated, it returns either the
value of true_expression or the value of false_expression (de-
pending on the condition) and this value can then be used in other
operations such as assignment

Conditional operator examples
• The true_expressionand false_expression can both be math-

ematical expressions, and only one of them will get computed. For
example:

int answer = (myInt % 2 == 0) ? myInt / 2 : myInt + 1;

If myInt is even, the computer will evaluate myInt / 2 and assign the
result to answer. If it is odd, the computer will evaluate myInt + 1 and
assign the result to answer.

• Conditional operators can be used with user input to quickly pro-
vide a “default value” if the user’s input is invalid. For example, we
can write a program that asks the user their height, but uses a de-
fault value of 0 if the user enters a negative height:

Console.WriteLine("What is your height in meters?");
double userHeight = double.Parse(Console.ReadLine());
double height = (userHeight >= 0.0) ? userHeight : 0.0;

• The condition can be a Boolean variable by itself, just like in an if
statement. This allows you to write code that looks kind of like En-
glish, due to the question mark in the conditional operator. For ex-
ample,

bool isAdult = age >= 18;
decimal price = isAdult ? 5.0m : 2.5m;
string closingTime = isAdult ? "10:00 pm" : "8:00 pm";

Arrays

Arrays are structures that allow you to store multiple values in memory
using a single name and indexes.

• Usually all the elements of an array have the same type.
• You limit the type of array elements when you declare the array.

229

• If you want the array to store elements of any type, you can specify
object as its type.

An array can be:

• Single-Dimensional,
• Multidimensional,
• Jagged.

Arrays are useful, for instance,

• When you want to store a collection of related values,
• When you do not know in advance how many variables will be

needed,
• When you need a large number of variables (say, 10) of the same

type.

Single-Dimensional Arrays
You can define a single-dimensional array as follow:

<type>[] arrayName;

where

• <type> can be any data-type and specifies the data-type of the
array elements.

• arrayName is an identifier that you will use to access and modify
the array elements.

Before using an array, you must specify the number of elements in the
array as follows:

arrayName = new <type>[<number of elements>];

where <type> is a type as before, and <number of elements>, called
the size declarator, is a strictly positive integer which will correspond to
the size of the array.

• An element of a single-dimensional array can be accessed and
modified by using the name of the array and the index of the ele-
ment as follows:

arrayName[<index>] = <value>; // Assigns <value> to the <index> element of the array arrayName.

Console.WriteLine(arrayName[<index>]); // Display the <index> element of the array arrayName.

The index of the first element in an array is always zero; the index of the
second element is one, and the index of the last element is the size of
the array minus one. As a consequence, if you specify an index greater
or equal to the number of elements, a run-time error will happen.

230

Indexing starting from 0 may seem surprising and counter-intuitive, but
this is a largely respected convention across programing languages and
computer scientists. Some insights on the reasons behind this (collective)
choice can be found in this answer on Computer Science Educators326.

Example

In the following example, we define an array named myArray with three
elements of type integer, and assign 10 to the first element, 20 to the
second element, and 30 to the last element.

int[] myArray;
myArray = new int[3]; // 3 is the size declarator
// We can now store 3 ints in this array,
// at index 0, 1 and 2

myArray[0] = 10; // 0 is the subscript, or index
myArray[1] = 20;
myArray[2] = 30;

If we were to try to store a fourth value in our array, at index 3, using e.g.

myArray[3] = 40;

our program would compile just fine, which may seems surprising. How-
ever, when executing this program, array bounds checking would be
performed and detect that there is a mismatch between the size of the
array and the index we are trying to use, resulting in a quite explicit error
message:

Unhandled Exception: System.IndexOutOfRangeException:
Index was outside the bounds of the array at
Program.Main()

↪
↪

Abridged Syntaxes

If you know the number of elements when you are defining an array, you
can combine declaration and assignment on one line as follows:

<type>[] arrayName = new <type>[<number of elements>];

So, we can combine the first two lines of the previous example and write:

int[] myArray = new int[3];

We can even initialize and give values on one line:

int[] myArray = new int[3] { 10, 20, 30 };
326https://cseducators.stackexchange.com/a/5026

231

https://cseducators.stackexchange.com/a/5026

And that statement can be rewritten as any of the following:

int[] myArray = new int[] { 10, 20, 30 };
int[] myArray = new[] { 10, 20, 30 };
int[] myArray = { 10, 20, 30 };

But, we should be careful, the following would cause an error:

int[] myArray = new int[5];
myArray = { 1, 2 ,3, 4, 5}; // ERROR

If we use the shorter notation, we have to give the values at initialization,
we cannot re-use this notation once the array has been created.

Other datatypes, and even objects, can be stored in arrays in a perfectly
similar way:

string[] myArray = { "Bob", "Mom", "Train", "Console" };
Rectangle[] arrayOfRectangle = new Rectangle[5]; // Assume there is a class called Rectangle

Default Values

If we initialize an array but do not assign any values to its elements, each
element will get the default value for that element’s data type. (These
are the same default values that are assigned to instance variables if we
do not write a constructor, as we learned in “More Advanced Object
Concepts”). In the following example, each element of myArray gets
initialized to 0, the default value for int:

int[] myArray = new int[5];
Console.WriteLine(myArray[2]); // Displays "0"
myArray[1]++;
Console.WriteLine(myArray[1]); // Displays "1"

However, remember that the default value for any object data type
is null, which is an object that does not exist. Attempting to call a
method on a null object will cause a run-time error of the type Sys-
tem.NullReferenceException;

Rectangle[] shapes = new Rectangle[3];
shapes[0].SetLength(5); // ERROR

Before we can use an array element that should contain an object, we
must instantiate an object and assign it to the array element. For our
array of Rectangle objects, we could either write code like this:

Rectangle[] shapes = new Rectangle[3];
shapes[0] = new Rectangle();
shapes[1] = new Rectangle();
shapes[2] = new Rectangle();

232

or use the abridged initialization syntax as follows:

Rectangle[] shapes = {new Rectangle(), new Rectangle(), new Rectangle()};

Custom Size and Loops
One of the benefits of arrays is that they allow you to specify the number
of their elements at run-time: the size declarator can be a variable, not
just an integer literal. Hence, depending on run-time conditions such as
user input, we can have enough space to store and process any number
of values.

In order to access the elements of whose size is not known until run-time,
we will need to use a loop. If the size of myArray comes from user input, it
wouldn’t be safe to try to access a specific element like myArray[5], be-
cause we cannot guarantee that the array will have at least 6 elements.
Instead, we can write a loop that uses a counter variable to access the
array, and use the loop condition to ensure that the variable does not
exceed the size of the array.

Example

In the following example, we get the number of elements at run-time
from the user, create an array with the appropriate size, and fill the array.

Console.WriteLine("What is the size of the array that you want?");
int size = int.Parse(Console.ReadLine());
int[] customArray = new int[size];

int counter = 0;
while (counter < size)
{

Console.WriteLine($"Enter the {counter + 1}th value");
customArray[counter] = int.Parse(Console.ReadLine());
counter++;

}

Observe that:

• If the user enters a negative value or a string that does not corre-
spond to an integer for the size value, our program will crash: we
are not performing any user-input validation here, to keep our ex-
ample compact.

• The loop condition is counter < size because we do not want
the loop to execute when counter is equal to size. The last valid
index in customArray is size - 1.

• We are asking for the {counter +1}th value because we prefer
not to confuse the user by asking for the “0th” value. Note that a

233

more sophisticated program would replace “th” with “st”, “nd” and
“rd” for the first three values.

The Length Property

Every single-dimensional array has a property called Length that returns
the number of the elements in the array (or size of the array).

To process an array whose size is not fixed at compile-time, we can use
this property to find out the number of elements in the array.

Example

int counter2 = 0;
while (counter2 < customArray.Length)
{

Console.WriteLine($"{counter2}: {customArray[counter2]}.");
counter2++;

}

Observe that this code does not need the variable size.

Note: You cannot use the length property to change the size of the array,
that is, entering

int[] test = new int[10];
test.Length = 9;

would return, at compile time,

Compilation error (line 8, col 3): Property or indexer 'System.Array.Length' cannot be assigned to -
-it is read only.

When a field is marked as ‘read only,’ it means the attribute can only
be initialized during the declaration or in the constructor of a class.
We receive this error because the array attribute, ‘Length,’ can not be
changed once the array is already declared. Resizing arrays will be
discussed in the section: Changing the Size.

Loops with Arrays of Objects

In the following example, we will ask the user how many Item objects
they want to create, then fill an array with Item objects initialized from
user input:

Console.WriteLine("How many items would you like to stock?");
Item[] items = new Item[int.Parse(Console.ReadLine())];
int i = 0;
while(i < items.Length)

234

{
Console.WriteLine($"Enter description of item {i+1}:");
string description = Console.ReadLine();
Console.WriteLine($"Enter price of item {i+1}:");
decimal price = decimal.Parse(Console.ReadLine());
items[i] = new Item(description, price);
i++;

}

Observe that, since we do not perform any user-input validation, we can
simply use the result of int.Parse() as the size declarator for the items
array - no size variable is needed at all.

We can also use while loops to search through arrays for a particular
value. For example, this code will find and display the lowest-priced item
in the array items, which was initialized by user input:

Item lowestItem = items[0];
int i = 1;
while(i < items.Length)
{

if(items[i].GetPrice() < lowestItem.GetPrice())
{

lowestItem = items[i];
}
i++;

}
Console.WriteLine($"The lowest-priced item is {lowestItem}");

Note that the lowestItem variable needs to be initialized to refer to an
Item object before we can call the GetPrice() method on it; we can-
not call GetPrice() if lowestItem is null. We could try to create an
Item object with the “highest possible” price, but a simpler approach is
to initialize lowestItem with items[0]. As long as the array has at least
one element, 0 is a valid index, and the first item in the array can be our
first “guess” at the lowest-priced item.

Changing the Size
There is a class named Array that can be used to resize an array. Upon
expanding an array, the additional indices will be filled with the default
value of the corresponding type. Shrinking an array will cause the data
in the removed indices (those beyond the new length) to be lost.

Example

Array.Resize(ref myArray, 4); //myArray[3] now contains 0

235

myArray[3] = 40;
Array.Resize(ref myArray, 2);

In the above example, all data starting at index 2 is lost.

For Loops With Arrays
• Previously, we learned that you can iterate over the elements of an

array using a while loop. We can also process arrays using for
loops, and in many cases they are more concise than the equiva-
lent while loop.

• For example, consider this code that finds the average of all the
elements in an array:

int[] homeworkGrades = {89, 72, 88, 80, 91};
int counter = 0;
int sum = 0;
while(counter < 5)
{

sum += homeworkGrades[counter];
counter++

}
double average = sum / 5.0;

• This can also be written with a for loop:

int sum = 0;
for(int i = 0; i < 5; i++)
{

sum += homeworkGrades[i];
}
double average = sum / 5.0;

• In a for loop that iterates over an array, the counter variable is also
used as the array index

• Since we did not need to use the counter variable outside the body
of the loop, we can declare it in the loop header and limit its scope
to the loop’s body

• Using a for loop to access array elements makes it easy to process
“the whole array” when the size of the array is user-provided:

Console.WriteLine("How many grades are there?");
int numGrades = int.Parse(Console.ReadLine());
int[] homeworkGrades = new int[numGrades];
for(int i = 0; i < numGrades; i++)
{

Console.WriteLine($"Enter grade for homework {i+1}");

236

homeworkGrades[i] = int.Parse(Console.ReadLine());
}

• You can use the Length property of an array to write a loop condi-
tion, even if you did not store the size of the array in a variable. For
example, this code does not need the variable numGrades:

int sum = 0;
for(int i = 0; i < homeworkGrades.Length; i++)
{

sum += homeworkGrades[i];
}
double average = (double) sum / homeworkGrades.Length;

• In general, as long as the loop condition is in the format i < <ar-
rayName>.Length (or, equivalently, i <= <arrayName>.Length
- 1), the loop will access each element of the array.

Over and Underflow

Overflow
• Assume a car has a 4-digit odometer, and currently, it shows 9999.

What does the odometer show if you drive the car another mile?
As you might guess, it shows 0000 while it should show 10000. The
reason is the odometer does not have a counter for the fifth digit.
Similarly, in C#, when you do arithmetic operations on integral data,
the result may not fit in the corresponding data type. This situation
is called an overflow error.

• In an unsigned data type variable with 𝑁 bits, we can store the
numbers from 0 to 2𝑁 − 1. In signed data type variables, the high
order bit represents the sign of the number as follows:

• 0 means zero or a positive value

• 1 means a negative value

• With the remaining 𝑁 − 1 bits, we can represent 2(𝑁 − 1) val-
ues. Hence, considering the sign bit, we can store a number from
−2(𝑁 − 1) to 2(𝑁 − 1) − 1 in the variable.

• In some programming languages like C and C++, overflow errors
cause undefined behavior, and can crash your program. In C#,
however, the extra bits are just ignored, and the program will con-
tinue executing even though the value in the variable may not
make sense. If the programmer is not careful to check for the pos-

237

sibility of overflow errors, they can lead to unwanted program be-
havior and even severe security problems.

• For example, assume a company gives loans to its employee. Cou-
ples working for the company can get loans separately, but the
total amount cannot exceed $10,000. The following program looks
like it checks loan requests to ensure they are below the limit, but it
can be attacked using an overflow error. (This program uses notions
you may have not studied yet, but that should not prevent you from
reading the source code and executing it.)

!include code/snippets/overflowExample.cs

• If the user enters 2 and 4,294,967,295, we expect to see the error
message (“Error: the sum of loans exceeds the maximum al-
lowance.”). However, this is not what will happen, and the request
will be accepted even though it should not have. The reason can
be explained as follows:

• uint is a 32-bit data type.
• The binary representation of 2 and 4,294,967,295 are 00000000000000000000000000000010

and 11111111111111111111111111111111.
• Therefore, the sum of these numbers should be 100000000000000000000000000000001,

which needs 33 bits.
• Nevertheless, there are only 32 bits available for the result, and the

extra bits will be dropped, so the result will be 00000000000000000000000000000001.
This is less than 10,000, so the program will conclude that the sum
of the loan values is less than 10,000.

Underflow
• Sometimes, the result of arithmetic operations over floating-point

numbers is smaller than the minimum value that can be stored in the
corresponding data type. This problem is known as the underflow
problem.

• In C#, in case of an underflow, the result will be zero.
• For example, the smallest value that can be stored in a float vari-

able is 1.5 ⋅ 10−45. If we attempt to divide this value by 10, the
variable will get the value 0, not 1.5 ⋅ 10−46:

!include code/snippets/underflowExample.cs

• An underflow error can result in “losing” data in the middle of a series
of operations: even if you immediately multiply by 10 again, the
intermediate result was less than 1.5 ⋅ 10−45, so the final result is still
0.

238

Random

• Random Number Generation

– Produce a number within some bounds following some statisti-
cal rules.

– A true random number is a number that is nondeterministically
selected from a set of numbers wherein each possible selection
has an equal probability of occurrence.

– Usually in computer science we contend with pseudo-random
numbers. These are not truly nondeterministic, but an approxi-
mation of random selection based on some algorithm.

– Since pseudo-random selections are “determined” by an algo-
rithm, or set of rules, they are technically deterministic.

• Random Class in C#

– Instantiate a random number generator and use to select num-
bers:

Random rand = new Random();
Random randB = new Random(seed_int);

– Notice that we can create a generator with or without an ar-
gument. The argument is called a seed for the generator.

– A seed tells the generator where to start its sequence. Using
the same seed will always reproduce the same sequence of
numbers.

– The default constructor still has a seed value, but it is a hidden
value pulled from the clock time during instantiation.

– Time-based seeds only reset approximately every 15 millisec-
onds.

– The random class is not “random enough” for cryptography.

– For cryptographic randomness, use the RNGCryptoService-
Provider327 class or System.Security.Cryptography.RandomNumberGenerator328.

• Using Random

– Next() method returns a pseudo-random number between 0
and 2,147,483,647 (max signed int), inclusive.

– By default, the number is always non-negative and within that
range.

327https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryp
toserviceprovider?view=net-5.0

328https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.randomn
umbergenerator?view=net-5.0

239

https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.randomnumbergenerator?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.randomnumbergenerator?view=net-5.0

int randomInt = rand.Next();

– What if we wanted to create a random number between 0
and 100?

– We could use rand.Next() and then use modulo to cut down
the answer range!

– Alternatively, we could give the Next() method an int argu-
ment to set a ceiling.

int randomUpto100 = rand.Next(101);

– The ceiling value is exclusive, so remember to use one number
higher than what you want to be your max number.

– We can also pass two arguments in order to set a range for the
values.

int random50to100 = rand.Next(50,101);

– The ceiling value is still exclusive, but the floor is inclusive.

– NextDouble() returns a normalized value (value between 0.0
and 1.0 inclusive).

– What if we want a different range? Adjust with math!

double randNeg2to3 - (rand.NextDouble()*5)-2;

– NextBytes() method takes a byte array as an argument and
generates a random byte value for each index.

– Remember, a byte has an unsigned value between 0 and 255
inclusive.

byte[] byteArray = new byte[10];
rand.NextBytes(byteArray);

• Creating Random Strings

– What if we want to construct random strings made of a, b, c,
and d?

– Other techniques are available, but we can use a loop and
switch!

Random rand = new Random();
string answer = “”;
int selection = 0;

for(int i = 0; i < 10; i++)
{

selection = rand.Next(4);
switch(selection){

240

case(0):
answer+=“a”;
break;

case(1):
answer+=“b”;
break;

case(2):
answer+=“c”;
break;

default:
answer+=“d”;
break;

}
}

While Loop With Complex Conditions

In the following example, a complex boolean expression is used in the
while statement. The program gets a value and tries to parse it as an
integer. If the value can not be converted to an integer, the program
tries again, but not more than three times.

int c;
string message;
int count;
bool res;

Console.WriteLine("Please enter an integer.");
message = Console.ReadLine();
res = int.TryParse(message, out c);
count = 0; // The user has 3 tries: count will be 0, 1, 2, and then we default.
while (!res && count < 3)
{

count++;
if (count == 3)
{

c = 1;
Console.WriteLine("I'm using the default value 1.");

}
else
{
Console.WriteLine("The value entered was not an integer.");

Console.WriteLine("Please enter an integer.");
message = Console.ReadLine();
res = int.TryParse(message, out c);

241

}
}
Console.WriteLine("The value is: " + c);

242

	Credits
	Purpose
	Authors
	Supports
	Tools
	Software
	Fonts
	Services

	Licence

	Contributing
	How can I contribute?
	If you are a student
	If you are an instructor
	If you are a UCA
	If you are an outside collaborator

	Next steps for editors

	Dev. Guide
	Resources Organization Overview
	Folders and Files
	Building and Deploying
	Tools, Briefly
	Locating Resources

	Editing Resources
	Best practices for all forms of content
	Creating new lectures
	Creating new labs
	Content Labelling

	Styling and Templating
	Updating docx template
	Updating odt template

	Building locally
	Website
	Editing the website
	Deploying locally the website
	Updating quartz

	Repository Maintenance
	Build outputs
	Github actions
	Creating releases
	Maintaining repository feedback
	Maintaining Instructors / G/UCA rights

	How to get Help
	In General
	For Students of the School of Computer and Cyber Sciences
	School of Computer and Cyber Sciences Tutoring Center
	ACM Club
	Other Club Activities

	How to Ask a Question?
	Commenting Using a Github Account

	Choosing Your Major
	Which degree is best for you?
	Summary
	So which degree is “best”?

	Course Assistants
	What Is an Undergraduate Course Assistant?
	How Do I Become One?
	I Am a UCA, What Should I Do Now?
	What Is the Difference With a GRA?
	What Is the Difference With a URA?

	UCA starting guide
	The Three Rules
	Editing the Resources

	Computer Requirements
	In Short
	In Terms of Hardware
	In Terms of Operating System
	Virtual Machines

	Where to Buy?
	Is There Anything Else I Should Know?

	Installing Software
	Generalities on Installing Software
	Executing Code Found on-line
	Accessing an IDE
	Installing an IDE On Your Own Computer
	Accessing One of the Computers in a Computer Lab
	Compiling Code On-Line

	(Un)Zipping Archives
	Unzipping Files
	Windows
	Linux
	macOS

	Zipping Files
	Windows
	Linux
	macOS

	But Where Is My Project?

	Keyboard Shortcuts
	Foreword
	Useful Shortcuts
	Build solution
	Exit any program*
	Redo*
	Run/execute program
	Save*
	Save All*
	Undo*
	Comment Code Selection
	Uncomment Code Selection

	Datatypes in C
	Value Types
	Numeric
	Logical
	Character

	Literals
	Compatibility
	Result Type of Operations
	References

	Computers and Programming
	Principles of Computer Programming
	Programming Language Concepts
	Software Concepts
	Programming Concepts
	Programming workflow
	(Integrated) Development Environment

	C# Fundamentals
	Introduction to the C# Language
	The Object-Oriented Paradigm
	First Program
	Hello World

	Rules of C# Syntax
	Conventions of C# Programs
	Reserved Words and Identifiers
	Write and WriteLine
	Escape Sequences

	Datatypes and Variables
	Datatype Basics
	Literals and Variables
	Literals and their types
	Variables overview

	Variable Operations
	Declaration
	Assignment
	Initialization (Declaration + Assignment)
	Assignment Details
	Displaying

	Format Specifiers
	Variables in Memory
	Sizes of Numeric Datatypes
	Value and Reference types

	Operators
	Arithmetic Operators
	Arithmetic and variables
	Compound assignment operators
	Increment and Decrement Operators
	Increment and decrement basics
	Difference between prefix and postfix
	Using increment/decrement in expressions

	Arithmetic on Mixed Data Types
	Implicit conversions in math
	Explicit conversions in math

	Order of Operations

	Conversions
	Assignments from different types
	Implicit conversions
	Explicit conversions

	Inputs and Outputs
	Reading Input from the User
	Parsing user input
	More detail on the Parse methods
	Correct input formatting

	Output with Variables
	Converting from numbers to strings
	The ToString() method

	String Concatenation
	Output with concatenation

	Introduction
	Class and Object Basics
	Writing Our First Class
	Using Our Class
	Flow of Control with Objects
	Introduction to UML
	Variable Scope
	Constants
	Reference Types: More Details

	More Advanced Object Concepts
	Default Values and the ClassRoom Class
	Constructors
	Writing ToString Methods
	Method Signatures and Overloading
	Constructors in UML
	Properties

	The static Keyword
	Static Methods
	Different ways of calling methods
	Declaring static methods
	static methods and instances
	Uses for static methods

	Static Variables
	Defining static variables
	Using static variables
	Static methods and variables
	Summary of static access rules

	Static Classes

	Introduction
	Booleans
	Variables
	Operations on Boolean Values
	Equality and Relational Operators
	Equality Operators
	Relational Operators
	Precedence of Operators

	if
	if Statements
	Introduction
	Example code with an if statement
	Syntax and rules for if statements

	if-else Statements
	Syntax and comparison

	Nested if-else Statements
	Using nested if statements

	if-else-if Statements
	If-else-if syntax
	Using if-else-if to solve the “floors problem”
	if-else-if with different conditions
	if-else-if vs. nested if

	Switch
	Switch Statements
	Multiple equality comparisons
	Syntax for switch statements
	Example switch statement
	switch with multiple statements
	Intentionally omitting break
	Scope and switch
	Limitations of switch

	While Loops
	Introduction to while loops
	Example code with a while loop
	Syntax and rules for while loops
	While loops may execute zero times
	Ensuring the loop ends
	Principles of writing a while loop

	do while
	Comparing while and if statements
	Code duplication in while loops
	Introduction to do-while
	Formal syntax and details of do-while
	do-while loops with multiple conditions

	Input Validation
	Valid and invalid data
	Ensuring data is valid with a loop
	Ensuring the user enters a number with TryParse

	The foreach Loop
	For Loops
	Counter-controlled loops
	for loop example and syntax
	Limitations and Pitfalls of Using for Loops
	Scope of the for loop’s variable
	Accidentally re-declaring a variable
	Accidentally double-incrementing the counter

	More Ways to use for Loops
	Complex condition statements
	Complex update statements
	Complex loop bodies
	Combining for and while loops

	Loop Vocabulary
	Combining Classes and Decision Structures
	Using if Statements with Methods
	Setters with Input Validation
	Constructors with Input Validation
	Boolean Parameters
	Ordinary Methods Using if
	Boolean Instance Variables

	Using while Loops with Classes
	Input Validation with Objects
	Using Loops Inside Methods
	Using Methods to Control Loops

	Examples
	The Room Class
	The Loan Class

	Break and continue
	Conditional iteration
	Skipping iterations with continue
	Loops with multiple end conditions
	Ending the loop with break

	The Conditional Operator
	Assignment with the conditional operator
	Conditional operator examples

	Arrays
	Single-Dimensional Arrays
	Example
	Abridged Syntaxes
	Default Values

	Custom Size and Loops
	Example
	The Length Property
	Example
	Loops with Arrays of Objects

	Changing the Size
	Example

	For Loops With Arrays

	Over and Underflow
	Overflow
	Underflow

	Random
	While Loop With Complex Conditions

